Age is a major risk factor for the development of cancer. Senescent fibroblasts, which accumulate with age, secrete protumorigenic factors collectively referred to as the senescence-associated secretory phenotype (SASP). Here, we examined the molecular mechanisms that control SASP activation, focusing on the known SASP factor osteopontin (OPN). We found that expression of the canonical SASP members interleukin (IL)-6 and IL-8, but not OPN, were dependent upon a persistent DNA damage response (DDR) as evidenced by ATM and NF-κB activation. Treatment with several histone deacetylase (HDAC) inhibitors robustly activated SASP in the absence of DNA breaks, suggesting that DDR-dependent SASP activation occurs in response to chromatin remodeling rather than physical breaks in DNA. In the setting of HDAC inhibition, IL-6 and IL-8 expression remained dependent upon ATM and NF-κB, while OPN expression remained independent of these factors. Further analysis revealed that HDAC1 inhibition was sufficient to induce OPN expression, which is interesting given that loss of HDAC1 expression correlates with increased OPN expression within the stromal compartment of invasive breast cancers. Importantly, fibroblasts treated with HDAC inhibitors promoted tumor growth in vivo. Our findings therefore indicate that HDAC modulation plays an important role in stromal cell activation, with important implications for the use of HDAC inhibitors in the treatment of cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605047PMC
http://dx.doi.org/10.1158/0008-5472.CAN-11-3386DOI Listing

Publication Analysis

Top Keywords

opn expression
16
hdac inhibitors
12
chromatin remodeling
8
senescence-associated secretory
8
secretory phenotype
8
sasp activation
8
il-6 il-8
8
atm nf-κb
8
expression remained
8
sasp
6

Similar Publications

Mechanical loading plays a pivotal role in regulating bone anabolic processes. Understanding the optimal mechanical loading parameters for cellular responses is critical for advancing strategies in orthopedic bioreactor-based bone tissue engineering. This study developed a poly (sorbitol sebacate) (PSS) filmscaffold with a sorbitol-to-sebacic acid molar ratio of 1:4.

View Article and Find Full Text PDF

This study describes the potential of the conditioned medium (CM) from adipose-derived mesenchymal stromal cells (ASCs) to affect the response of bone cells and support bone remodeling. This was in particular assessed by an in vitro model represented by a 3D human osteoblast-osteoclast co-culture. It has been reported that the effects of ASCs are predominantly attributable to the paracrine effects of their secreted factors, that are present as soluble factors or loaded into extracellular vesicles.

View Article and Find Full Text PDF

Calcium deposition in vascular smooth muscle cells (VSMCs), a form of ectopic ossification in blood vessels, can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) potentiates calcium deposition in VSMCs and mouse aorta induced by inorganic phosphate (Pi) or vitamin D. Based on cDNA microarray and RNA sequencing data of Pi-treated rat VSMCs, C/EBPβ was found to be upregulated and thus selected for further evaluation.

View Article and Find Full Text PDF

After tooth extraction, alveolar bone absorbs unevenly, leading to soft tissue collapse, which hinders full regeneration. Bone loss makes it harder to do dental implants and repairs. Inspired by the biological architecture of bone, a deformable SIS/HA (Small intestinal submucosa/Hydroxyapatite) composite hydrogel coaxial scaffold was designed to maintain bone volume in the socket.

View Article and Find Full Text PDF
Article Synopsis
  • Tooth extraction often leads to bone loss in the jaw, complicating future dental treatments and aesthetics.
  • Purple leaves contain beneficial compounds that may improve bone health, while hydroxyapatite is a biocompatible substance that helps bone growth.
  • Combining purple leaf extract with hydroxyapatite significantly boosts key bone-related markers and calcium deposition over time in stem cell studies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!