The nuclear positioning of mammalian genes often correlates with their functional state. For instance, the human cystic fibrosis transmembrane conductance regulator (CFTR) gene associates with the nuclear periphery in its inactive state, but occupies interior positions when active. It is not understood how nuclear gene positioning is determined. Here, we investigated trichostatin A (TSA)-induced repositioning of CFTR in order to address molecular mechanisms controlling gene positioning. Treatment with the histone deacetylase (HDAC) inhibitor TSA induced increased histone acetylation and CFTR repositioning towards the interior within 20 min. When CFTR localized in the nuclear interior (either after TSA treatment or when the gene was active) consistent histone H3 hyperacetylation was observed at a CTCF site close to the CFTR promoter. Knockdown experiments revealed that CTCF was essential for perinuclear CFTR positioning and both, CTCF knockdown as well as TSA treatment had similar and CFTR-specific effects on radial positioning. Furthermore, knockdown experiments revealed that also A-type lamins were required for the perinuclear positioning of CFTR. Together, the results showed that CTCF, A-type lamins and an active HDAC were essential for perinuclear positioning of CFTR and these components acted on a CTCF site adjacent to the CFTR promoter. The results are consistent with the idea that CTCF bound close to the CFTR promoter, A-type lamins and an active HDAC form a complex at the nuclear periphery, which becomes disrupted upon inhibition of the HDAC, leading to the observed release of CFTR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.24136 | DOI Listing |
Int J Mol Sci
December 2024
Scientific Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia.
A growing body of evidence suggests that actin plays a role in nuclear architecture, genome organisation, and regulation. Our study of human lung adenocarcinoma cells demonstrates that the equilibrium between actin isoforms affects the composition of the nuclear lamina, which in turn influences nuclear stiffness and cellular behaviour. The downregulation of β-actin resulted in an increase in nuclear area, accompanied by a decrease in A-type lamins and an enhancement in lamin B2.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA.
Hutchinson-Gilford progeria syndrome (HGPS) is a progeroid disorder characterized by multiple aging-like phenotypes, including disease in large arteries. HGPS is caused by an internally truncated prelamin A (progerin) that cannot undergo the ZMPSTE24-mediated processing step that converts farnesyl-prelamin A to mature lamin A; consequently, progerin retains a carboxyl-terminal farnesyl lipid anchor. In cultured cells, progerin and full-length farnesyl-prelamin A (produced in cells) form an abnormal nuclear lamin meshwork accompanied by nuclear membrane ruptures and cell death; however, these proteins differ in their capacity to cause arterial disease.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan. Electronic address:
Cell Death Dis
October 2024
Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, Institut de Myologie, Paris, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!