Secondary attraction to aggregation pheromones plays a central role in the host colonization behavior of the European spruce bark beetle Ips typographus. However, it is largely unknown how the beetles pioneering an attack locate suitable host trees, and eventually accept or reject them. To find possible biomarkers for host choice by I. typographus, we analyzed the chemistry of 58 Norway spruce (Picea abies) trees that were subsequently either (1) successfully attacked and killed, (2) unsuccessfully attacked, or (3) left unattacked. The trees were sampled before the main beetle flight in a natural Norway spruce-dominated forest. No pheromones were used to attract beetles to the experimental trees. To test the trees' defense potential, each tree was treated in a local area with the defense hormone methyl jasmonate (MeJ), and treated and untreated bark were analyzed for 66 different compounds, including terpenes, phenolics and alkaloids. The chemistry of MeJ-treated bark correlated strongly with the success of I. typographus attack, revealing major chemical differences between killed trees and unsuccessfully attacked trees. Surviving trees produced significantly higher amounts of most of the 39 analyzed mono-, sesqui-, and diterpenes and of 4 of 20 phenolics. Alkaloids showed no clear pattern. Differences in untreated bark were less pronounced, where only 1,8-cineole and (-)-limonene were significantly higher in unsuccessfully attacked trees. Our results show that the potential of individual P. abies trees for inducing defense compounds upon I. typographus attack may partly determine tree resistance to this bark beetle by inhibiting its mass attack.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-012-2298-8 | DOI Listing |
Genome Biol Evol
December 2024
Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland.
In many species, polymorphic genomic inversions underlie complex phenotypic polymorphisms and facilitate local adaptation in the face of gene flow. Multiple polymorphic inversions can co-occur in a genome, but the prevalence, evolutionary significance, and limits to complexity of genomic inversion landscapes remain poorly understood. Here, we examine genome-wide genetic variation in one of Europe's most destructive forest pests, the spruce bark beetle Ips typographus, scan for polymorphic inversions, and test whether inversions are associated with key traits in this species.
View Article and Find Full Text PDFPhysiol Plant
December 2024
Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway.
Priming of Norway spruce (Picea abies) inducible defenses is a promising way to protect young trees from herbivores and pathogens. Methyl jasmonate (MeJA) application is known to induce and potentially prime Norway spruce defenses but may also reduce plant growth. Therefore, we tested β-aminobutyric acid (BABA) as an alternative priming chemical to enhance spruce resistance, using 2-year-old Norway spruce plants.
View Article and Find Full Text PDFTree Physiol
December 2024
Chair of Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53, Freiburg 79110, Germany.
Norway spruce (Picea abies L.) is economically one of the most important conifer species in Europe. Spruce forests are threatened by outbreaks of the bark beetle Ips typographus L.
View Article and Find Full Text PDFOecologia
December 2024
Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
This study aims to elucidate the connection between the phylogeny of epiphytic macrolichens and their chemical niches. We analyzed published floristic and environmental data from 90 canopies of Picea glauca x engelmannii across various forest settings in British Columbia. To explore the concordance between a principal coordinates analysis of the cladistic distance matrix and a global non-metric multidimensional scaling of the ecological distance matrix, we used Procrustean randomization tests.
View Article and Find Full Text PDFBMC Biotechnol
November 2024
Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!