A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mid-gestation ovine cardiomyocytes are vulnerable to mitotic suppression by thyroid hormone. | LitMetric

Circulating fetal 3,3',5-tri-iodo-l-thyronine (T(3) ) is maintained at very low levels until a dramatic prepartum surge. 3,3',5-Tri-iodo-l-thyronine inhibits serum-stimulated proliferation in near-term ovine cardiomyocytes, but it is not known whether midgestation myocytes are also inhibited. Because early cessation of cardiomyocyte mitosis would result in an underendowed heart, we hypothesized that 0.67 gestation (100 of 145 days gestation) ovine cardiomyocytes would be insensitive to suppressive growth effects of T(3) . These younger cardiomyocytes were grown with T(3) in 10% serum-enriched media for 24 hours. Physiological (0.37, 0.75, and 1.5 nmol/L) concentrations of T(3) dramatically suppressed mitotic activity in cardiomyocytes (P < .001). 3,3',5-Tri-iodo-l-thyronine stimulated phosphorylation of extracellular signal-regulated kinase and AKT (also known as Protein Kinase B [PKB]) signaling pathways. Nevertheless, the protein content of the cell cycle suppressor, p21, increased 2-fold (P < .05), and promoter, cyclin D1, decreased by 50%. Contrary to our hypothesis, elevated levels of T(3) powerfully inhibit proliferation of midgestation fetal cardiomyocytes. Thus, midgestation maternal hyperthyroidism might lead to an underendowed fetal myocardium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439123PMC
http://dx.doi.org/10.1177/1933719111432860DOI Listing

Publication Analysis

Top Keywords

ovine cardiomyocytes
12
cardiomyocytes midgestation
8
cardiomyocytes
6
mid-gestation ovine
4
cardiomyocytes vulnerable
4
vulnerable mitotic
4
mitotic suppression
4
suppression thyroid
4
thyroid hormone
4
hormone circulating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!