A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically impaired subjects. The robotic orthosis has hip and knee sagittal plane rotations actuated by antagonistic configuration of PMA. The orthosis has passive mechanisms to allow vertical and lateral translations of the trunk and a passive hip abduction/adduction joint. A foot lifter having a passive spring mechanism was used to ensure sufficient foot clearance during swing phase. A trajectory tracking controller was implemented to evaluate the performance of the robotic orthosis on a healthy subject. The results show that the robotic orthosis is able to perform the treadmill training task by providing sufficient torques to achieve physiological gait patterns and a realistic stepping experience. The orthosis is a new addition to the rapidly advancing field of robotic orthoses for treadmill training.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2012.02.003 | DOI Listing |
Wearable Technol
December 2024
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
This work studies upper-limb impairment resulting from stroke or traumatic brain injury and presents a simple technological solution for a subset of patients: a soft, active stretching aid for at-home use. To better understand the issues associated with existing associated rehabilitation devices, customer discovery conversations were conducted with 153 people in the healthcare ecosystem (60 patients, 30 caregivers, and 63 medical providers). These patients fell into two populations: spastic (stiff, clenched hands) and flaccid (limp hands).
View Article and Find Full Text PDFJpn J Compr Rehabil Sci
December 2024
Department of Rehabilitation Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
Unlabelled: Yamaguchi A, Kanazawa Y, Hirano S, Aoyagi Y. A Case with Left Hemiplegia after Cerebral Infarction with Improved Walking Ability Through Robot-assisted Gait Training Combined with Neuromuscular Electrical Stimulation for Foot Drop. Jpn J Compr Rehabil Sci 2024; 15: 88-93.
View Article and Find Full Text PDFCureus
December 2024
Department of Rehabilitation, Musashigaoka Hospital, Kumamoto, JPN.
Gait asymmetry in post-stroke patients is an important gait characteristic that is associated with their balance control, inefficiency, and risks of musculoskeletal injury to the non-paretic lower limb and falling. Unfortunately, most stroke patients retain an asymmetrical gait pattern, even though their gait independence and gait speed improve. We describe the clinical course of a subacute stroke patient who achieved a symmetrical gait at discharge after undergoing both gait training with orthoses and robot-assisted gait training from the early intervention phase.
View Article and Find Full Text PDFIEEE Robot Autom Lett
February 2025
Department of Mechanical Engineering, Columbia University in the City of New York, NY, USA.
Intent inferral on a hand orthosis for stroke patients is challenging due to the difficulty of data collection. Additionally, EMG signals exhibit significant variations across different conditions, sessions, and subjects, making it hard for classifiers to generalize. Traditional approaches require a large labeled dataset from the new condition, session, or subject to train intent classifiers; however, this data collection process is burdensome and time-consuming.
View Article and Find Full Text PDFWearable Technol
November 2024
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
Stroke causes neurological and physical impairment in millions of people around the world every year. To better comprehend the upper-limb needs and challenges stroke survivors face and the issues associated with existing technology and formulate ideas for a technological solution, the authors conversed with 153 members of the ecosystem (60 neuro patients, 30 caregivers, and 63 medical providers). Patients fell into two populations depending on their upper-limb impairment: spastic (stiff, clenched hands) and flaccid (limp hands).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!