Ionic species have been shown to significantly perturb the interactions between non-polar solutes in aqueous solution. These perturbations are often analyzed in terms of the interactions existing between hydrophobic surfaces and ions. It has been known for some time, that ions with a high charge density are repelled from hydrophobic surfaces while ions with a low charge density tend to stick to these surfaces. Therefore, from a continuum model standpoint, small monovalent ions promote hydrophobicity by minimizing the exposed hydrophobic surface area, while "sticky" large monovalent ions interact with the hydrophobic surfaces and discourage aggregation. However, the charge-dense lithium ion often exhibits anomalous behaviour different from these predicted trends: instead of enhancing, the addition of lithium ions often seems to weaken the hydrophobic effect and on the contrary help dissolve hydrophobic molecules. This weakening of apparent hydrophobicity is considered to be one of the reasons for the protein denaturing properties of lithium salts. Recent theoretical and experimental results however have shown that lithium cations can interact with a variety of molecular functional groups. This suggests that this apparent lithium-induced lowering of hydrophobicity, that is often reported in the literature may be a result of specific interactions between these molecular functional groups and lithium, rather than weakening the interaction between hydrophobic surfaces. This work examines these possibilities by studying the effect of various cations on the simple hydrophobic interaction existing between methyl and phenyl contact-pairs and demonstrates that the effect of lithium cations on the hydrophobic effect follows the trend predicted by continuum models. In other words, the influence of an ion on the hydrophobic interaction between two non-polar surfaces is a function of the interaction of that ion and each non-polar surface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2012.02.003DOI Listing

Publication Analysis

Top Keywords

hydrophobic surfaces
16
hydrophobic
11
lithium
8
lithium ions
8
surfaces ions
8
charge density
8
monovalent ions
8
lithium cations
8
molecular functional
8
functional groups
8

Similar Publications

Nowadays, most of the newly developed active pharmaceutical ingredients (APIs) consist of cohesive particles with a mean particle size of <100μm, a wide particle size distribution (PSD) and a tendency to agglomerate, therefore they are difficult to handle in continuous manufacturing (CM) lines. The current paper focuses on the impact of various glidants on the bulk properties of difficult-to-handle APIs. Three challenging powders were included: two extremely cohesive APIs (acetaminophen micronized (APAPμ) and metoprolol tartrate (MPT)) which previously have shown processing issues during different stages of the continuous direct compression (CDC)-line and a spray dried placebo (SD) powder containing hydroxypropylmethyl cellulose (HPMC), known for its sub-optimal flow with a high specific surface area (SSA) and low density.

View Article and Find Full Text PDF

This paper introduces a highly absorbent and sensitive cellulose nanofiber (CNF)/gold nanorod (GNR)@Ag surface-enhanced Raman scattering (SERS) sensor, fabricated using the vacuum filtration method. By optimizing the Ag thickness in the GNR@Ag core-shell structures and integrating them with CNFs, optimal SERS hotspots were identified using the Raman probe molecule 4-aminothiophenol (4-ATP). To concentrate pesticides extracted from fruit and vegetable surfaces, we utilized the evaporation enrichment effect using hydrophilic CNF and hole-punched hydrophobic polydimethylsiloxane (PDMS).

View Article and Find Full Text PDF

Impact of residual aluminum on nanofiltration gypsum scaling: Mitigation roles played by different species.

Water Res

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China. Electronic address:

Residual aluminum (Al) is a growing pollutant in nanofiltration (NF) membrane-based drinking water treatment. To investigate the impact of distinct Al species fouling layers on gypsum scaling during NF, gypsum scaling tests were conducted on bare and three Al-conditioned (AlCl-, Al, and Al-) membranes. The morphology of gypsum, the role of Al species on Ca adsorption during gypsum scaling, and the interactions between gypsum crystals and Al-conditioned membranes were investigated.

View Article and Find Full Text PDF

Solvent Mediated Interfacial Microenvironment Design for High-Performance Electrochemical CO Reduction to C Products.

Small

January 2025

National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.

Electrochemical CO reduction (CORR) in membrane electrode assembly (MEA) represents a viable strategy for converting CO into value-added multi-carbon (C) compounds. Therefore, the microstructure of the catalyst layer (CL) affects local gas transport, charge conduction, and proton supply at three-phase interfaces, which is significantly determined by the solvent environment. However, the microenvironment of the CLs and the mechanism of the solvent effect on C selectivity remains elusive.

View Article and Find Full Text PDF

Enhancing Droplet Spreading on a Hydrophobic Plant Surface by Surfactant/Cellulose Nanocrystal Complexes.

ACS Nano

January 2025

Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

A surfactant is an efficient and common additive used to enhance the spreading of droplets on hydrophobic surfaces. However, a high surfactant concentration is required to achieve the desired performance, resulting in environmental pollution and increased costs. Additionally, the pesticide loading capacity of surfactants at low concentrations (below their critical micelle concentrations) is a concern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!