Co-culturing human skin keratinocytes along with a feeder layer has proven to considerably improve their proliferative properties by delaying massive induction of terminal differentiation. Through a yet unclear mechanism, we recently reported that irradiated 3T3 (i3T3) fibroblasts used as a feeder layer increase the nuclear content of Sp1, a positive transcription factor (TF) that plays a critical role in many cellular functions including cell proliferation, into both adult skin keratinocytes and newborn skin keratinocytes. In this study, we examined the influence of i3T3 on the expression and DNA binding of NFI, another TF important for cell proliferation and cell cycle progression, and attempted to decipher the mechanism by which the feeder layer contributes at maintaining higher levels of these TFs in skin keratinocytes. Our results indicate that co-culturing both adult skin keratinocytes and newborn skin keratinocytes along with a feeder layer dramatically increases glycosylation of NFI and may prevent it from being degraded by the proteasome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2012.01.021 | DOI Listing |
Arch Dermatol Res
January 2025
Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.
Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Dermatology and Venereology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
Both the surgical non-cultured melanocyte-keratinocyte transplant procedure (MKTP) and intradermal injection of 5-Fluorouracil (5-FU) are effective in the treatment of vitiligo. Intrablisters injection of MKTP was done in one study with better results than MKTP application after ablative CO2 laser of the reciepient area. However, intrablister injection of 5-FU was not done before.
View Article and Find Full Text PDFCell Chem Biol
January 2025
Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Electronic address:
The epidermal barrier defends the body against dehydration and harmful substances. The commensal microbiota is essential for proper differentiation and repair of the epidermal barrier, an effect mediated by the aryl hydrocarbon receptor (AHR). However, the microbial mechanisms of AHR activation in skin are less understood.
View Article and Find Full Text PDFPLoS One
January 2025
Departments of Microbiology, College of Medicine, Ewha Womans University, Seoul, Korea.
Mast cells, immune sentinels that respond to various stimuli in barrier organs, provide defense by expressing pattern recognition receptors, such as Toll-like receptors (TLRs). They may affect inflammatory responses and wound healing. Here, we investigated the effect of TLR2/6-stimulated mast cells on wound healing in keratinocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!