Biofilms: new ideas for an old problem.

Recent Pat Biotechnol

IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.

Published: April 2012

Microbial cells, under moist conditions, are able to adhere to surfaces and to form structured communities embedded in a matrix of extracellular polymeric substances (EPS). In industrial environments, biofilms can cause heat and mass transfer limitations whilst in medical facilities they can be a source of contamination and proliferation of infections. Biofilm formation is related to the pathogenicity of some bacterial strains and cells in biofilms are usually resistant to antimicrobials agents, which increases the interest in new and sound methods for their prevention and destruction.

Download full-text PDF

Source
http://dx.doi.org/10.2174/187220812799789163DOI Listing

Publication Analysis

Top Keywords

biofilms ideas
4
ideas problem
4
problem microbial
4
microbial cells
4
cells moist
4
moist conditions
4
conditions adhere
4
adhere surfaces
4
surfaces form
4
form structured
4

Similar Publications

Chlorination-induced spread of antibiotic resistance genes in drinking water systems.

Water Res

January 2025

School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia. Electronic address:

Chlorine, the most widely utilized disinfectant for drinking water globally, has recently been implicated in facilitating the spread of antibiotic resistance genes (ARGs), raising concerns about its underestimated environmental and ecological risks. However, given the current fragmented research focus and results, a comprehensive understanding of the potential mechanisms and influencing factors behind chlorination-promoted ARGs transmission in drinking water systems is crucial. This work is the first to systematically review the variations in abundance, transmission mechanisms, influencing factors, and mitigation strategies related to ARGs during the chlorination process.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease that is significantly characterized by cognitive and memory impairments, which worsen significantly with age. In the late stages of AD, metal ion disorders and an imbalance of reactive oxygen species (ROS) levels occur in the brain microenvironment, which causes abnormal aggregation of β-amyloid (Aβ), leading to a significant worsening of the AD symptoms. Therefore, we designed a composite nanomaterial of macrophage membranes-encapsulated Prussian blue nanoparticles (PB NPs/MM).

View Article and Find Full Text PDF

Understanding the principle of the bacteria-anode surface interaction can enhance electron transfer in microbial fuel cells and aid in antibiofouling. In this article, we investigate the adsorption propensity of common adhesins [-acetylglucosamine (NAG), d-glucose, and alginate] found in microbial biofilms on the surface of unmodified and modified graphite through density functional theory and molecular dynamics simulations. DFT results showed that all the molecules could interact with the graphite surface, with NAG (Δ = 3.

View Article and Find Full Text PDF

Impact of anode surface modifications on microbial fuel cell performance and algal biomass production.

Environ Technol

November 2024

Department of Chemical Engineering, Faculty of Engineering, Kocaeli University, Kocaeli, Turkey.

In this study, the performance of dual-chamber microbial fuel cells with carbon fiber (CF) anodes surface modified by multi-walled carbon nanotube coating (CF-MWCNT) and nitric acid treatment (CF-HNO) was compared. The performance of all these modified anodes was found to be better than bare electrode. The modified anodes were shown to significantly outperform the bare electrode anodes.

View Article and Find Full Text PDF

Impact of SARS-CoV-2 infection on respiratory and gut microbiome stability: a metagenomic investigation in long-term-hospitalized COVID-19 patients.

NPJ Biofilms Microbiomes

November 2024

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China.

During the coronavirus disease 2019 (COVID-19) pandemic, the exploration of microecology has been essential for elucidating the intricacies of infection mechanisms and the recovery of afflicted individuals. To decipher the interplay of microorganisms between the intestinal and respiratory tracts, we collected sputum and throat swabs and feces from COVID-19 patients and explored the mutual migration among intestinal and respiratory microorganisms. Using next-generation sequencing (NGS) technology, we investigated intestinal and respiratory microorganism intermigration in two patients with severe COVID-19 during their hospitalization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!