Microbial cells, under moist conditions, are able to adhere to surfaces and to form structured communities embedded in a matrix of extracellular polymeric substances (EPS). In industrial environments, biofilms can cause heat and mass transfer limitations whilst in medical facilities they can be a source of contamination and proliferation of infections. Biofilm formation is related to the pathogenicity of some bacterial strains and cells in biofilms are usually resistant to antimicrobials agents, which increases the interest in new and sound methods for their prevention and destruction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/187220812799789163 | DOI Listing |
Water Res
January 2025
School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia. Electronic address:
Chlorine, the most widely utilized disinfectant for drinking water globally, has recently been implicated in facilitating the spread of antibiotic resistance genes (ARGs), raising concerns about its underestimated environmental and ecological risks. However, given the current fragmented research focus and results, a comprehensive understanding of the potential mechanisms and influencing factors behind chlorination-promoted ARGs transmission in drinking water systems is crucial. This work is the first to systematically review the variations in abundance, transmission mechanisms, influencing factors, and mitigation strategies related to ARGs during the chlorination process.
View Article and Find Full Text PDFInt J Pharm
December 2024
School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China. Electronic address:
Alzheimer's disease (AD) is a neurodegenerative disease that is significantly characterized by cognitive and memory impairments, which worsen significantly with age. In the late stages of AD, metal ion disorders and an imbalance of reactive oxygen species (ROS) levels occur in the brain microenvironment, which causes abnormal aggregation of β-amyloid (Aβ), leading to a significant worsening of the AD symptoms. Therefore, we designed a composite nanomaterial of macrophage membranes-encapsulated Prussian blue nanoparticles (PB NPs/MM).
View Article and Find Full Text PDFACS Omega
December 2024
Federal University of Technology, Africa Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Owerri, PMB 1526, Imo State 460114, Nigeria.
Understanding the principle of the bacteria-anode surface interaction can enhance electron transfer in microbial fuel cells and aid in antibiofouling. In this article, we investigate the adsorption propensity of common adhesins [-acetylglucosamine (NAG), d-glucose, and alginate] found in microbial biofilms on the surface of unmodified and modified graphite through density functional theory and molecular dynamics simulations. DFT results showed that all the molecules could interact with the graphite surface, with NAG (Δ = 3.
View Article and Find Full Text PDFEnviron Technol
November 2024
Department of Chemical Engineering, Faculty of Engineering, Kocaeli University, Kocaeli, Turkey.
In this study, the performance of dual-chamber microbial fuel cells with carbon fiber (CF) anodes surface modified by multi-walled carbon nanotube coating (CF-MWCNT) and nitric acid treatment (CF-HNO) was compared. The performance of all these modified anodes was found to be better than bare electrode. The modified anodes were shown to significantly outperform the bare electrode anodes.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
November 2024
State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China.
During the coronavirus disease 2019 (COVID-19) pandemic, the exploration of microecology has been essential for elucidating the intricacies of infection mechanisms and the recovery of afflicted individuals. To decipher the interplay of microorganisms between the intestinal and respiratory tracts, we collected sputum and throat swabs and feces from COVID-19 patients and explored the mutual migration among intestinal and respiratory microorganisms. Using next-generation sequencing (NGS) technology, we investigated intestinal and respiratory microorganism intermigration in two patients with severe COVID-19 during their hospitalization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!