Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The binary Clostridium botulinum C2 toxin consists of the binding/translocation component C2IIa and the separate enzyme component C2I. C2IIa delivers C2I into the cytosol of eukaryotic target cells where C2I ADP-ribosylates actin. After receptor-mediated endocytosis of the C2IIa/C2I complex, C2IIa forms pores in membranes of acidified early endosomes and unfolded C2I translocates through the pores into the cytosol. Membrane translocation of C2I is facilitated by the activities of host cell chaperone Hsp90 and the peptidyl-prolyl cis/trans isomerase (PPIase) cyclophilin A. Here, we demonstrated that Hsp90 co-precipitates with C2I from lysates of C2 toxin-treated cells and identified the FK506-binding protein (FKBP) 51 as a novel interaction partner of C2I in vitro and in intact mammalian cells. Prompted by this finding, we used the specific pharmacological inhibitor FK506 to investigate whether the PPIase activity of FKBPs plays a role during membrane translocation of C2 toxin. Treatment of cells with FK506 protected cultured cells from intoxication with C2 toxin. Moreover, FK506 inhibited the pH-dependent translocation of C2I across membranes into the cytosol but did not interfere with the enzyme activity of C2I or binding of C2 toxin to cells. Furthermore, FK506 treatment delayed intoxication with the related binary actin ADP-ribosylating toxins from Clostridium perfringens (iota toxin) and Clostridium difficile (CDT) but not with the Rho-glucosylating Clostridium difficile toxin A (TcdA). In conclusion, our results support the hypothesis that clostridial binary actin-ADP-ribosylating toxins share a specific FKBP-dependent translocation mechanism during their uptake into mammalian cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1462-5822.2012.01788.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!