A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of sulfated quercetin and epicatechin metabolites. | LitMetric

Characterization of sulfated quercetin and epicatechin metabolites.

J Agric Food Chem

Grupo de Investigación en Polifenoles (GIP/USAL), Universidad de Salamanca, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno, Salamanca, Spain.

Published: April 2012

Different monosulfates of quercetin and epicatechin with metabolic interest were obtained by hemisynthesis and characterized regarding their chromatographic behavior and absorption and mass spectra. Three of these compounds were further isolated, and their structures were elucidated by mass spectrometry and (1)H and (13)C nuclear magnetic resonance using one- and two-dimensional techniques (heteronuclear single-quantum coherence and heteronuclear multiple-bond correlation). The calculation of the proton and carbon shifts caused by sulfation allowed for the assignment of the position of the sulfate group in the flavonoids, so that the compounds were identified as quercetin-3'-O-sulfate, quercetin 4'-O-sulfate, and epicatechin 4'-O-sulfate. It was found that sulfation at position 3' induced a large upfield shift in the carbon bearing the sulfate group and downfield displacements of the adjacent carbons, whereas no significant upfield or downfield shifts were observed with respect to the parent flavonoid when sulfation was produced at position 4'.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf2050203DOI Listing

Publication Analysis

Top Keywords

quercetin epicatechin
8
sulfate group
8
characterization sulfated
4
sulfated quercetin
4
epicatechin metabolites
4
metabolites monosulfates
4
monosulfates quercetin
4
epicatechin metabolic
4
metabolic interest
4
interest hemisynthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!