Effects of infrared (IR) radiation generated by a low-power Co2-laser on sensory neurons of chick embryos were investigated by organotypic culture method. Low-power IR radiation firstly results in marked neurite suppressing action, probably induced by activation of Na+,K+-ATPase signal-transducing function. A further increase in energy of radiation leads to stimulation of neurite growth. We suggest that this effect is triggered by activation of Na+,K+-ATPase pumping function. Involvement of Na+,K+-ATPase in the control of the transduction process was proved by results obtained after application of ouabain at very low concentrations. Physiological significance of low-power IR radiation and effects of ouabain at nanomolar level was investigated in behavioral experiments (formalin test). It is shown that inflammatory pain induced by injection of formalin is relieved both due to ouabain action and after IR irradiation.

Download full-text PDF

Source
http://dx.doi.org/10.2174/157340612799278531DOI Listing

Publication Analysis

Top Keywords

signal-transducing function
8
infrared radiation
8
radiation leads
8
low-power radiation
8
activation na+k+-atpase
8
radiation
5
modulation signal-transducing
4
function neuronal
4
neuronal membrane
4
na+k+-atpase
4

Similar Publications

The TRAMP complex contains two enzymatic activities essential for RNA processing upstream of the nuclear exosome. Within TRAMP, RNA is 3' polyadenylated by a subcomplex of Trf4/5 and Air1/2 and unwound 3' to 5' by Mtr4, a DExH helicase. The molecular mechanisms of TRAMP assembly and RNA shuffling between the two TRAMP catalytic sites are poorly understood.

View Article and Find Full Text PDF

Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.

View Article and Find Full Text PDF

Background: SMOC1 has recently emerged as one of the most significant and consistent new biomarkers of early Alzheimer's disease (AD). SMOC1 is one of the earliest changing proteins in AD, with SMOC1 cerebrospinal fluid levels increasing 29 years before symptom onset in autosomal dominant AD. Despite this clear association with disease, very little is known about the role of SMOC1 in AD or its function in the brain.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have identified genetic polymorphisms of ABI3 as a risk factor for late-onset Alzheimer's Disease (LOAD), but the role of ABI3 in microglia is not well understood.
  • Using CRISPR/Cas9, a specific risk variant (S212F) was introduced into mouse models to study its effects on AD-related pathologies alongside 5xFAD mice over time.
  • Results showed that the 5xFAD/Abi3 mice exhibited a decrease in amyloid beta plaque burden and a significant reduction in microglia numbers with age, suggesting ABI3 may influence both plaque formation and microglial response in AD pathology.
View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, DISTALZ, Lille, France.

Background: BIN1 is a major susceptibility gene for AD and BIN1 protein interacts with Tau. However, the contribution of BIN1 and its isoforms to AD pathogenesis remains unclear. We recently described that human BIN1 isoform1 (BIN1iso1) induces an accumulation of early endosome vesicles leading to neurodegeneration in Drosophila retina and that the early endosome size regulation was conserved in human induced neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!