Objective: Attention deficit hyperactivity disorder (ADHD) is a common, highly heritable psychiatric disorder. Because of its multifactorial etiology, however, identifying the genes involved has been difficult. The authors followed up on recent findings suggesting that rare copy number variants (CNVs) may be important for ADHD etiology.

Method: The authors performed a genome-wide analysis of large, rare CNVs (<1% population frequency) in children with ADHD (N=896) and comparison subjects (N=2,455) from the IMAGE II Consortium.

Results: The authors observed 1,562 individually rare CNVs >100 kb in size, which segregated into 912 independent loci. Overall, the rate of rare CNVs >100 kb was 1.15 times higher in ADHD case subjects relative to comparison subjects, with duplications spanning known genes showing a 1.2-fold enrichment. In accordance with a previous study, rare CNVs >500 kb showed the greatest enrichment (1.28-fold). CNVs identified in ADHD case subjects were significantly enriched for loci implicated in autism and in schizophrenia. Duplications spanning the CHRNA7 gene at chromosome 15q13.3 were associated with ADHD in single-locus analysis. This finding was consistently replicated in an additional 2,242 ADHD case subjects and 8,552 comparison subjects from four independent cohorts from the United Kingdom, the United States, and Canada. Presence of the duplication at 15q13.3 appeared to be associated with comorbid conduct disorder.

Conclusions: These findings support the enrichment of large, rare CNVs in ADHD and implicate duplications at 15q13.3 as a novel risk factor for ADHD. With a frequency of 0.6% in the populations investigated and a relatively large effect size (odds ratio=2.22, 95% confidence interval=1.5–3.6), this locus could be an important contributor to ADHD etiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601405PMC
http://dx.doi.org/10.1176/appi.ajp.2011.11060822DOI Listing

Publication Analysis

Top Keywords

rare cnvs
16
adhd case
12
case subjects
12
adhd
9
genome-wide analysis
8
copy number
8
number variants
8
attention deficit
8
deficit hyperactivity
8
hyperactivity disorder
8

Similar Publications

Background: Atezolizumab plus bevacizumab has shown promising efficacy in advanced mucosal melanoma in the multi-centre phase II study. This report updates 3-year survival outcomes and multi-omics analysis to identify potential response biomarkers.

Methods: Forty-three intention-to-treat (ITT) patients received intravenous administration of atezolizumab and bevacizumab every 3 weeks.

View Article and Find Full Text PDF

UniVar: A variant interpretation platform enhancing rare disease diagnosis through robust filtering and unified analysis of SNV, INDEL, CNV and SV.

Comput Biol Med

December 2024

Hong Kong Genome Institute, Hong Kong Science Park, Shatin, Hong Kong, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China; Laboratory of Computational Genomics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China. Electronic address:

Background: Interpreting the pathogenicity of genetic variants associated with rare diseases is a laborious and time-consuming endeavour. To streamline the diagnostic process and lighten the burden of variant interpretation, it is crucial to automate variant annotation and prioritization. Unfortunately, currently available variant interpretation tools lack a unified and comprehensive workflow that can collectively assess the clinical significance of these types of variants together: small nucleotide variants (SNVs), small insertions/deletions (INDELs), copy number variants (CNVs) and structural variants (SVs).

View Article and Find Full Text PDF

Long-read sequencing can often overcome the deficiencies in routine microarray or short-read technologies in detecting complex genomic rearrangements. Here we used Pacific Biosciences circular consensus sequencing to resolve complex rearrangements in two patients with rare genetic anomalies. Copy number variants (CNVs) identified by clinical microarray -chr8p deletion and chr8q duplication in patient 1, and interstitial deletions of chr18q in patient 2-were suggestive of underlying rearrangements.

View Article and Find Full Text PDF

Purpose: Structural variants such as multiexon deletions and duplications are an important cause of disease but are often overlooked in standard exome/genome sequencing analysis. We aimed to evaluate the detection of copy-number variants (CNVs) from exome sequencing (ES) in comparison with genome-wide low-resolution and exon-resolution chromosomal microarrays (CMAs) and to characterize the properties of de novo CNVs in a large clinical cohort.

Methods: We performed CNV detection using ES of 9859 parent-offspring trios in the Deciphering Developmental Disorders (DDD) study and compared them with CNVs detected from exon-resolution array comparative genomic hybridization in 5197 probands from the DDD study.

View Article and Find Full Text PDF

Intellectual disability (ID) is defined as a severe impairment in reasoning, learning, and problem-solving abilities along with adaptive behavior that occurs before the age of 18 years. The present study aimed to present the clinical and genetic data of a cohort of Turkish pediatric patients diagnosed with the ultrarare (which only up to 20 cases having been reported in the relevant literature thus far) ID phenotype. A total of 29 patients from 26 different families, who were diagnosed with ultrarare ID upon whole exome sequencing (WES) analysis, were included in the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!