Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Numerous studies have suggested that K(+) channels regulate a wide range of physiological processes in mammalian cells. However, little is known about the specific function of K(+) channels in germ cells. In this study, mouse zygotes were cultured in a medium containing K(+) channel blockers to identify the functional role of K(+) channels in mouse embryonic development. Voltage-dependent K(+) channel blockers, such as tetraethylammonium and BaCl(2), had no effect on embryonic development to the blastocyst stage, whereas K(2P) channel blockers, such as quinine, selective serotonin reuptake inhibitors (fluoxetine, paroxetine, and citalopram), gadolinium trichloride, anandamide, ruthenium red, and zinc chloride, significantly decreased blastocyst formation (P<0.05). RT-PCR data showed that members of the K(2P) channel family, specifically KCNK2, KCNK10, KCNK4, KCNK3, and KCNK9, were expressed in mouse oocytes and embryos. In addition, their mRNA expression levels, except Kcnk3, were up-regulated by above ninefold in morula-stage embryos compared with 2-cell stage embryos (2-cells). Immunocytochemical data showed that KCNK2, KCNK10, KCNK4, KCNK3, and KCNK9 channel proteins were expressed in the membrane of oocytes, 2-cells, and blastocysts. Each siRNA injection targeted at Kcnk2, Kcnk10, Kcnk4, Kcnk3, and Kcnk9 significantly decreased blastocyst formation by ~38% compared with scrambled siRNA injection (P<0.05). The blockade of K(2P) channels acidified the intracellular pH and depolarized the membrane potential. These results suggest that K(2P) channels could improve mouse embryonic development through the modulation of gating by activators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/REP-11-0225 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!