5-hydroxymethyl-cytosine (5-hmC) is a cytosine modification that is relatively abundant in mammalian pre-implantation embryos and embryonic stem cells (ESC) derived from mammalian blastocysts. Recent observations imply that both 5-hmC and Tet1/2/3 proteins, catalyzing the conversion of 5-methyl-cytosine to 5-hmC, may play an important role in self renewal and differentiation of ESCs. Here we assessed the distribution of 5-hmC in zebrafish and chick embryos and found that, unlike in mammals, 5-hmC is immunochemically undetectable in these systems before the onset of organogenesis. In addition, Tet1/2/3 transcripts are either low or undetectable at corresponding stages of zebrafish development. However, 5-hmC is enriched in later zebrafish and chick embryos and exhibits tissue-specific distribution in adult zebrafish. Our findings show that 5-hmC enrichment of non-committed cells is not a universal feature of vertebrate development and give insights both into evolution of embryonic pluripotency and the potential role of 5-hmC in its regulation.

Download full-text PDF

Source
http://dx.doi.org/10.4161/epi.19375DOI Listing

Publication Analysis

Top Keywords

enrichment non-committed
8
non-committed cells
8
cells universal
8
universal feature
8
feature vertebrate
8
vertebrate development
8
5-hmc
8
zebrafish chick
8
chick embryos
8
5-hydroxymethyl-cytosine enrichment
4

Similar Publications

5-hydroxymethyl-cytosine enrichment of non-committed cells is not a universal feature of vertebrate development.

Epigenetics

April 2012

Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Nottingham, UK.

5-hydroxymethyl-cytosine (5-hmC) is a cytosine modification that is relatively abundant in mammalian pre-implantation embryos and embryonic stem cells (ESC) derived from mammalian blastocysts. Recent observations imply that both 5-hmC and Tet1/2/3 proteins, catalyzing the conversion of 5-methyl-cytosine to 5-hmC, may play an important role in self renewal and differentiation of ESCs. Here we assessed the distribution of 5-hmC in zebrafish and chick embryos and found that, unlike in mammals, 5-hmC is immunochemically undetectable in these systems before the onset of organogenesis.

View Article and Find Full Text PDF

It is established that human mesenchymal stem cells (hMSCs) from bone marrow are a source of osteoblast progenitors in vivo and under appropriate conditions, differentiate into osteoblasts ex vivo. Because hMSCs are recovered by iliac crest aspirate and enriched by virtue of their adherence to tissue culture plastic, the cells provide a convenient ex vivo model for the study of osteogenic tissue repair in an experimentally accessible system. Recent advances in the field of skeletal development and osteogenesis have demonstrated that signaling through the canonical wingless (Wnt) pathway is critical for the differentiation of progenitor cell lines into osteoblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!