β-Carotene is the major dietary source of provitamin A. Central cleavage of β-carotene catalyzed by β-carotene oxygenase 1 yields two molecules of retinaldehyde. Subsequent oxidation produces all-trans-retinoic acid (ATRA), which functions as a ligand for a family of nuclear transcription factors, the retinoic acid receptors (RARs). Eccentric cleavage of β-carotene at non-central double bonds is catalyzed by other enzymes and can also occur non-enzymatically. The products of these reactions are β-apocarotenals and β-apocarotenones, whose biological functions in mammals are unknown. We used reporter gene assays to show that none of the β-apocarotenoids significantly activated RARs. Importantly, however, β-apo-14'-carotenal, β-apo-14'-carotenoic acid, and β-apo-13-carotenone antagonized ATRA-induced transactivation of RARs. Competitive radioligand binding assays demonstrated that these putative RAR antagonists compete directly with retinoic acid for high affinity binding to purified receptors. Molecular modeling studies confirmed that β-apo-13-carotenone can interact directly with the ligand binding site of the retinoid receptors. β-Apo-13-carotenone and the β-apo-14'-carotenoids inhibited ATRA-induced expression of retinoid responsive genes in Hep G2 cells. Finally, we developed an LC/MS method and found 3-5 nm β-apo-13-carotenone was present in human plasma. These findings suggest that β-apocarotenoids function as naturally occurring retinoid antagonists. The antagonism of retinoid signaling by these metabolites may have implications for the activities of dietary β-carotene as a provitamin A and as a modulator of risk for cardiovascular disease and cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346154PMC
http://dx.doi.org/10.1074/jbc.M111.325142DOI Listing

Publication Analysis

Top Keywords

retinoic acid
12
naturally occurring
8
eccentric cleavage
8
acid receptors
8
cleavage β-carotene
8
β-carotene
6
acid
5
occurring eccentric
4
cleavage products
4
products provitamin
4

Similar Publications

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is primarily known for causing severe joint and muscle symptoms, but its pathological effects have extended beyond these tissues. In this study, we conducted a comprehensive proteomic analysis across various organs in rodent and nonhuman primate models to investigate CHIKV's impact on organs beyond joints and muscles and to identify key host factors involved in its pathogenesis. Our findings reveal significant species-specific similarities and differences in immune responses and metabolic regulation, with proteins like Interferon-Stimulated Gene 15 (ISG15) and Retinoic Acid-Inducible Gene I (RIG-I) playing crucial roles in the anti-CHIKV defense.

View Article and Find Full Text PDF

Mouse embryonic stem cells (mESCs) and other naïve pluripotent stem cells can reverse typical developmental trajectories and, at low frequency, de-differentiate into 2-cell-like cells (2CLCs) that resemble the mammalian embryo during zygotic genome activation (ZGA). This affords the opportunity to reveal molecular principles that govern the pre-implantation stages of mammalian development. We leveraged a multipurpose allele for acute protein depletion and efficient immunoprecipitation to dissect the molecular functions of the chromatin repressor EHMT2, a candidate antagonist of the mESC-to-2CLC transition.

View Article and Find Full Text PDF

Background: Acne treatment can take weeks to deliver noticeable improvements, which may diminish patients' perception of treatment effectiveness and undermine treatment adherence. Combination topical treatments that target multiple acne pathophysiological pathways are more efficacious than topical monotherapies, and simplifying combination treatment by delivering multiple active ingredients as fixed combinations may improve adherence.

Methods: This review provides an overview of efficacy with 4 weeks of treatment in pivotal trials of fixed-combination topical treatments for acne.

View Article and Find Full Text PDF

Distinct pathways utilized by METTL3 to regulate antiviral innate immune response.

iScience

November 2024

Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.

Article Synopsis
  • METTL3 is a key enzyme that adds m6A modifications to RNA, impacting innate immunity and viral responses.
  • Infection with EV71 increases METTL3 levels in both IFN-deficient and proficient cells through changes in transcription and protein modifications.
  • METTL3 regulates antiviral responses through both m6A-dependent and independent mechanisms, suggesting it could be a valuable target for developing antiviral treatments.
View Article and Find Full Text PDF

Background/aim: Melanoma arises from the uncontrolled multiplication of melanocytes, and poses an escalating global health concern. Despite the importance of early detection and surgical removal for effective treatment, metastatic melanoma poses treatment challenges, with limited options. Among optional therapies, including chemotherapy and immunotherapy, all-trans retinoic acid (ATRA), a natural metabolite of vitamin A, has shown promise in treating melanoma by inducing differentiation, apoptosis, growth arrest, and immune modulation in melanoma cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!