We proposed and demonstrated a simple but deterministic scheme for generating polarization-entangled photon pairs at telecommunication wavelengths with type-II quasi-phase-matched spontaneous parametric down-conversion (QPM-SPDC) having two poling periods. We fabricated a LiNbO3 crystal having two poling periods so as to generate entangled photons at two wavelengths, i.e., 1506 nm and 1594 nm. We characterized the two-photon polarization state with state tomography and confirmed that the state was highly entangled.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.005508 | DOI Listing |
Philos Trans A Math Phys Eng Sci
December 2024
Istituto di Fotonica e Nanotecnologie del CNR, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
This work provides a mathematical derivation of a quasi-stationary (QS) model for multimode parametric down-conversion (PDC), which was presented in Gatti . (Gatti ., .
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, 75013 Paris, France.
Harnessing high-dimensional entangled states of light presents a frontier for advancing quantum information technologies, from fundamental tests of quantum mechanics to enhanced computation and communication protocols. In this context, the spatial degree of freedom stands out as particularly suited for on-chip integration. But while traditional demonstrations produce and manipulate path-entangled states sequentially with discrete optical elements, continuously coupled nonlinear waveguide systems offer a promising alternative where photons can be generated and interfere along the entire propagation length, unveiling novel capabilities within a reduced footprint.
View Article and Find Full Text PDFNanophotonics
August 2024
ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia.
Nanophotonics
August 2024
Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str. 15, 07745 Jena, Germany.
We develop a fully vectorial and non-paraxial formalism to describe spontaneous parametric down-conversion in nonlinear thin films. The formalism is capable of treating slabs with a sub-wavelength thickness, describe the associated Fabry-Pérot effects, and even treat absorptive nonlinear materials. With this formalism, we perform an in-depth study of the dynamics of entangled photon-pair generation in nonlinear thin films, to provide a needed theoretical understanding for such systems that have recently attracted much experimental attention as sources of photon pairs.
View Article and Find Full Text PDFNanophotonics
November 2023
Department of Engineering, Advanced Optics and Photonics Laboratory, School of Science Technology, Nottingham Trent University, Nottingham, UK.
Metasurfaces, composed of artificial meta-atoms of subwavelength size, can support strong light-matter interaction based on multipolar resonances and plasmonics, hence offering the great capability of empowering nonlinear generation. Recently, owing to their ability to manipulate the amplitude and phase of the nonlinear emission in the subwavelength scale, metasurfaces have been recognized as ultra-compact, flat optical components for a vast range of applications, including nonlinear imaging, quantum light sources, and ultrasensitive sensing. This review focuses on the recent progress on nonlinear metasurfaces for those applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!