In this work we have analyzed theoretically and experimentally the critical angle for the emission generated in doped polymer optical fibers as a function of different launching conditions by using the side-illumination fluorescence technique. A theoretical model has been developed in order to explain the experimental measurements. It is shown that both the theoretical and experimental critical angles are appreciably higher than the meridional critical angle corresponding to the maximum acceptance angle for a single source placed at the fiber axis. This increase changes the value of several important parameters in the performance of active fibers. The analysis has been performed in polymer optical fibers doped with a conjugated polymer.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.004630DOI Listing

Publication Analysis

Top Keywords

critical angle
12
polymer optical
12
optical fibers
12
side-illumination fluorescence
8
critical
4
fluorescence critical
4
angle
4
angle theory
4
theory application
4
application f8bt-doped
4

Similar Publications

Book localization is crucial for the development of intelligent book inventory systems, where the high-precision detection of book spines is a critical requirement. However, the varying tilt angles and diverse aspect ratios of books on library shelves often reduce the effectiveness of conventional object detection algorithms. To address these challenges, this study proposes an enhanced oriented R-CNN algorithm for book spine detection.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), including exosomes, are promising pharmaceutical modalities. They are purified from cell culture supernatant; however, the preparation may contain EVs with the desired therapeutic effects and different types of EVs, lipoproteins, and soluble proteins. Evaluating the composition of particulate impurities and the levels of protein impurities in final preparations is critical for quality control.

View Article and Find Full Text PDF

The Role of Re-Entrant Microstructures in Modulating Droplet Evaporation Modes.

Micromachines (Basel)

December 2024

Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, QLD 4111, Australia.

The evaporation dynamics of sessile droplets on re-entrant microstructures are critical for applications in microfluidics, thermal management, and self-cleaning surfaces. Re-entrant structures, such as mushroom-like shapes with overhanging features, trap air beneath droplets to enhance non-wettability. The present study examines the evaporation of a water droplet on silicon carbide (SiC) and silicon dioxide (SiO) re-entrant structures, focusing on the effects of material composition and solid area fraction on volume reduction, contact angle, and evaporation modes.

View Article and Find Full Text PDF

Advanced Characterization of Solid-State Battery Materials Using Neutron Scattering Techniques.

Materials (Basel)

December 2024

Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA.

Advanced batteries require advanced characterization techniques, and neutron scattering is one of the most powerful experimental methods available for studying next-generation battery materials. Neutron scattering offers a non-destructive method to probe the complex structural and chemical processes occurring in batteries during operation in truly in situ/in operando measurements with a high sensitivity to battery-relevant elements such as lithium. Neutrons have energies comparable to the energies of excitations in materials and wavelengths comparable to atomic distances in the solid state, thus giving access to study structural and dynamical properties of materials on an atomic scale.

View Article and Find Full Text PDF

Electronic confinement induced quantum dot behavior in magic-angle twisted bilayer graphene.

Nanoscale

January 2025

Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.

Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!