We report on GaAs-based high power density vertical-cavity surface-emitting laser diodes (VCSELs) with ion implanted isolated current apertures. A continuous-wave output power of over 380 mW and the power density of 4.9 kW/cm have been achieved at 15 °C from the 100-μm-diameter aperture, which is the highest output characteristic ever reported for an ion implanted VCSEL. A high background suppression ratio of over 40 dB has also been obtained at the emission wavelength of 970 nm. The ion implantation technique provides an excellent current isolation in the apertures and would be a key to realize high power output from a VCSEL array.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.004206 | DOI Listing |
Rev Sci Instrum
January 2025
State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
In this paper, we present the development of a nanosecond pulse generator utilizing semiconductor opening switches (SOS), designed to deliver high voltage and operate at a high repetitive frequency. The pulse generator comprises three main components: a primary charging unit, a magnetic pulse compression unit, and an SOS magnification unit. To ensure stable operation of the high-power charging unit at high repetitive frequencies, a rectifying resonant charging and energy recovery circuit are implemented, providing a 1 kV charging voltage at a 3 kHz repetition rate.
View Article and Find Full Text PDFACS Nano
January 2025
Division of Advanced Nano-Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
Heating techniques have underpinned the progress of the material and manufacturing industries. However, the explosive development of nanomaterials and micro/nanodevices has raised more requirements for the heating technique, including but not limited to high efficiency, low cost, high controllability, good usability, scalability, universality, and eco-friendliness. Carbothermal shock (CTS), a heating technique derived from traditional electrical heating, meets these requirements and is advancing at a high rate.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.
Two new nonfused ring nonfullerene electron acceptors, NFAs, (dicarbazolyl)bis(2-(3-oxo-2,3-dihydro-1-inden-1-ylidene)malononitrile) () and -(2-(5,6-fluoro-3-oxo-2,3-dihydro-1-inden-1-ylidene)malononitrile) (), thus exhibiting an A-D-A motif, were synthesized and characterized. As thin films, they exhibit the lowest energy absorption signature near 540 nm, extending down to ∼700 nm. This band is due to an intramolecular charge transfer process from the (nonfused dicarbazoyl; ) moiety to the malononitrile-based units () based on density functional theory calculations (DFT), which are also corroborated by time-dependent DFT (TDDFT) computations.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
Layered transition metal oxide (NaTMO) cathodes are considered highly appropriate for the practical applications of sodium-ion batteries (SIBs) owing to their facile synthesis and high theoretical capacity. Generally, the phase evolution behaviors of NaTMO during solid-state reactions at high temperature closely related to their carbon footprint, prime cost, and the eventual electrochemical properties, while the thermal stability in various desodiated states associated with wide temperature fluctuations are extremely prominent to the electrochemical properties and safety of SIB devices. Therefore, in this review, the influences of sintering conditions such as pyrolysis temperature, soaking time, and cooling rates on the phase formation patterns of NaTMO are summarized.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
Xylene isomers, including -xylene (X), -xylene (X), -xylene (X), and ethyl benzene (EB), are important raw materials in industry. The separation of xylene isomers has been recognized as one of the "seven chemical separations to change the world". However, because of their similar physicochemical properties, totally separating four xylene isomers has remained a big challenge until now.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!