We study the effect of nonlocal optical response on the optical properties of metallic nanowires, by numerically implementing the hydrodynamical Drude model for arbitrary nanowire geometries. We first demonstrate the accuracy of our frequency-domain finite-element implementation by benchmarking it in a wide frequency range against analytical results for the extinction cross section of a cylindrical plasmonic nanowire. Our main results concern more complex geometries, namely cylindrical and bow-tie nanowire dimers that can strongly enhance optical fields. For both types of dimers we find that nonlocal response can strongly affect both the field enhancement in between the dimers and their respective extinction cross sections. In particular, we give examples of blueshifted maximal field enhancements near hybridized plasmonic dimer resonances that are still large but nearly two times smaller than in the usual local-response description. For the same geometry at a fixed frequency, the field enhancement and cross section can also be significantly more enhanced in the nonlocal-response model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.004176 | DOI Listing |
Environ Geochem Health
January 2025
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
Coal mining in India, especially open-cast mining, substantially strengthens the economy while concurrently causing environmental deterioration, such as soil pollution with toxic chemicals and heavy metals. This study sought to examine the efficacy of vermicompost as a remediation technique for Mine Tailing Soil (MTS) in the Ledo Coal Fields. During a 120-day duration, different concentrations of vermicompost (20%, 30%, and 40%) were administered to MTS, and the impacts on soil physicochemical parameters, fertility, and plant growth were evaluated.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea.
Surface-enhanced Raman scattering has been widely used for molecular/material characterization and chemical and biological sensing and imaging applications. In particular, plasmonic nanogap-enhanced Raman scattering (NERS) is based on the highly localized electric field formed within the nanogap between closely spaced metallic surfaces to more strongly amplify Raman signals than the cases with molecules on metal surfaces. Nanoparticle-based NERS offers extraordinarily strong Raman signals and a plethora of opportunities in sensing, imaging and many different types of biomedical applications.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2025
Department of Gynaecology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning Province, Shenyang, 110001, The People's Republic of China.
Background: The "Healthy China" initiative, along with advancements in technology for cancer diagnosis and treatment, has significantly enhanced outcomes for patients with gynecologic tumors. The trends of late marriage and delayed childbirth have led to an increasing number of women diagnosed with gynecologic cancers who are seeking fertility preservation in China. This issue is critical yet often overlooked in clinical practice.
View Article and Find Full Text PDFSports Med
January 2025
IRMES-UPR 7329, Institut de Recherche Médicale et d'Épidémiologie du Sport, Université Paris Cité, 11 Avenue du Tremblay, 75012, Paris, France.
The scientific literature on talent identification is extensive, with significant advancements made over the past 30 years. However, as with any field, the translation of research into practice and its impact on the field have been slower than anticipated. Indeed, recent findings highlight a pervasive relative age effect, the effects of maturation being often overlooked, disparate populations between young and senior performers, and a necessity to embrace a holistic approach.
View Article and Find Full Text PDFJ Mol Model
January 2025
State Key Laboratory of Polyolefins and Catalysis, Shanghai, 200062, People's Republic of China.
Context: This study aims to reveal the reaction mechanisms of H and O on the NiO(100) and Ce-doped NiO(100) surfaces using the density functional theory (DFT) combined with the on-site Coulomb correction (DFT + U) method. It was found that H and O react favorably on the reduced surfaces of both materials. However, after the oxygen vacancy is filled, the activation energy for the reaction between H₂ and lattice oxygen increases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!