A photonic crystal fiber is optimized for chromatic dispersion compensation by using inner cladding modes. To this end, a photonic-oriented version of the downhill-simplex algorithm is employed. The numerical results show a dispersion profile that accurately compensates the targeted dispersion curve, as well as its dispersion slope. The presented fiber has a simple structure, while radiation losses can be reduced simply by adding a few more air-hole rings. Fabrication tolerances are also considered showing how fabrication inaccuracies effects can be overridden by just adjusting the compensation length.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.003467 | DOI Listing |
As a low-energy method to increase the data rate of optical links in data centers, we propose self-homodyne Nyquist optical time division multiplexing (OTDM). In Nyquist OTDM, spectrally efficient high-baud rate signals can be generated exceeding the limit of electronic signal processing. However, full integration of OTDM systems has not been reported, mainly because of the complicated signal detection scheme, which involves demultiplexing and clock recovery.
View Article and Find Full Text PDFThis article conducts a comparative study of the complexity reduction of neural network (NN) models for nonlinearity compensation used in digital subcarrier multiplexing (DSCM)-based optical communication systems. We employ the NN model based on bi-directional long short-term memory (biLSTM) and 1D-convolutional NN (1D-CNN) layers. To reduce the computation complexity of the proposed solution, weight clustering is applied to the NN.
View Article and Find Full Text PDFOptical transceivers serve as the backbone of high-speed data transmission over optical fiber in communication systems and there is a constant challenge to keep cost and power consumption low while increasing data capacities. However, dispersion impairments introduced by the transmission of data over optical fiber, limit the baud rates and fiber reach. In this paper, we demonstrate a low loss, transmission-based grating device to compensate for dispersion up to 20 km by the concatenation of gratings where the operation occurs outside of the stopband in the region where transmissivity is high, and the normal dispersion magnitude is large.
View Article and Find Full Text PDFThe rapid growth of modern Internet applications demands ever-increasing transmission capacity and reduced latency in optical interconnect systems utilizing intensity modulation and direct detection (IM/DD). However, the intrinsic limitations of silica-based standard single-mode fiber (SMF) will ultimately be insufficient to meet these escalating demands. The nested antiresonant nodeless fiber (NANF), a newly designed hollow-core fiber, has garnered significant attention as a potential solution to these challenges.
View Article and Find Full Text PDFFront Chem
January 2025
Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China.
Gas sensors are now widely employed in many industries due to the rapid speed of industrialization and the growth of the Internet of Things. However, the wearability and mobility of traditional gas sensors are limited by their high reliance on external power sources. Nanogenerators (NGs) can compensate for their power source limitations when paired with gas sensors by transforming the environment's widely dispersed low-frequency energy into electrical energy, allowing for self-powered gas detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!