Prohibitins (prohibitin-1 and -2) comprise a family of highly conserved proteins that are mainly localized to mitochondria. Recent studies showed that prohibitins are up-regulated upon T cell activation and play an essential role in maintaining mitochondrial homeostasis. In the present study, we found that a considerable proportion of prohibitin-1 and -2 induced in response to T cell activation was expressed on the surface of activated T cells. When mouse and human T cells were stimulated with PMA and ionomycin, prohibitins expressed on the cell surface were increased significantly, peaking at 48 h after stimulation. Stimulation of mouse T cells with anti-CD3 and anti-CD28 antibodies also remarkably induced the cell surface expression of prohibitins. Their expression on the cell surface was also detected in T cell leukemia cells such as Jurkat cells. In Jurkat cells, prohibitin-1 and -2 were co-localized with CD3 on the cell surface, and anti-CD3 antibody-induced signaling, the MAP kinase cascade, was inhibited on treatment with protein A magnetic beads co-conjugated with anti-CD3 antibody and anti-prohibitin-1 or anti-prohibitin-2 antibody. These results suggest that prohibitins expressed on the surface of activated T cells are involved in the T cell receptor-mediated signaling cascade.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2012.02.149 | DOI Listing |
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China. *Corresponding authors, E-mail:
B and T lymphocyte attenuator (BTLA) is an inhibitory immune checkpoint, which typically interacts with herpesvirus entry mediator (HVEM) and plays a crucial role in regulating immune balance. BTLA interacts with its ligand HVEM in a cis manner on the surface of the same immune cell to maintain immune tolerance, while trans interactions on the surface of different immune cells mediate immunosuppressive effects. Dysregulation of the BTLA/HVEM axis can impair the functions of immune cells, particularly T lymphocytes, promoting immune escape of tumor cells and ultimately leading to tumor progression.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
Chair of Technical Biochemistry, Technische Universität Dresden, Dresden, Saxony, Germany.
Ikarugamycin is a member of the natural product family of the polycyclic tetramate macrolactams (PoTeMs). The compound exhibits a diverse range of biological activities, including antimicrobial, antiprotozoal, anti-leukemic, and anti-inflammatory properties. In addition, it interferes with several crucial cellular functions, such as oxidized low-density lipoprotein uptake in macrophages, Nef-induced CD4 cell surface downregulation, and mechanisms of endocytosis.
View Article and Find Full Text PDFJ Med Case Rep
January 2025
Department of Clinical Medicine, Jining Medical University, Jining, China.
Background: Superficial acral fibromyxoma is a noncancerous, benign tumor of soft tissue with an unidentified origin. Occurrences of abnormalities on the palm are less frequently documented.
Case Report Presentation: A 47-year-old East Asian woman presented with a palm tumor on her left knuckle that had been present for 4 months.
Commun Biol
January 2025
Faculty of Science, Ibaraki University, Mito, Japan.
Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Bioengineering, School of Engineering, The University of Tokyo; Institute of Medical Science, The University of Tokyo; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Japan. Electronic address:
Post-translational modification of proteins is a crucial biological reaction that regulates protein functions by altering molecular properties. The specific detection of such modifications in proteins has made significant contributions to molecular biology research and holds potential for future drug development applications. In HIV research, for example, tyrosine sulfation at the N-terminus of C-C chemokine receptor type 5 (CCR5) is considered to significantly enhance HIV infection efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!