Effect of freezing temperature on the color of frozen salmon.

J Food Sci

Nofima, Osloveien 1, N-1430 Ås, Norway.

Published: September 2011

Unlabelled: New freezing methods developed with the purpose of improved product quality after thawing can sometimes be difficult to get accepted in the market. The reason for this is the formation of ice crystals that can give the product a temporary color loss and make it less appealing. We have here used microscopy to study ice crystal size as a function of freezing temperature by investigating the voids in the cell tissue left by the ice crystals. We have also investigated how freezing temperature affects the color and the visible absorption spectra of frozen salmon. Freezing temperatures previously determined to be the best for quality after thawing (-40 to -60 °C) were found to cause a substantial loss in perceived color intensity during frozen state. This illustrated the conflict between optimal freezing temperatures with respect to quality after thawing against visual appearance during frozen state. Low freezing temperatures gave many small ice crystals, increased light scattering and an increased absorption level for all wavelengths in the visible region. Increased astaxanthin concentration on the other hand would give higher absorption at 490 nm. The results showed a clear potential of using visible interactance spectroscopy to differentiate between poor product coloration due to lack of pigmentation and temporary color loss due to light scattering by ice crystal. This type of measurements could be a useful tool in the development of new freezing methods and to monitor ice crystal growth during frozen storage. It could also potentially be used by the industry to prove good product quality.

Practical Application: In this article we have shown that freezing food products at intermediate to low temperatures (-40 to -80 °C) can result in paler color during frozen state, which could affect consumer acceptance. We have also presented a spectroscopic method that can separate between poor product color and temporary color loss due to freezing.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1750-3841.2011.02313.xDOI Listing

Publication Analysis

Top Keywords

freezing temperature
12
quality thawing
12
ice crystals
12
temporary color
12
color loss
12
ice crystal
12
freezing temperatures
12
frozen state
12
freezing
10
color
8

Similar Publications

Formulation screening of lyophilized mRNA-lipid nanoparticles.

Int J Pharm

January 2025

Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstr. 5, Freiburg i. Br. 79104 Germany; ten23 health AG, Mattenstr. 22, Basel 4058 Switzerland. Electronic address:

Lipid nanoparticles (LNPs) have demonstrated their therapeutic potential as safe and effective drug delivery systems for nucleic acids during the COVID-19 pandemic. However, one of the main challenges during technical CMC (Chemistry, Manufacturing, and Controls) development is their long-term stability at temperatures of 2-8 °C or higher, which may be improved by the removal of water by lyophilization. In this study, we identified lyo-/cryo-protectants for freeze-dried mRNA-LNP formulations beyond conventional excipients such as sucrose and trehalose as T-modifiers using polyA as a surrogate.

View Article and Find Full Text PDF

Magnetic systems, wherein competing degree of freedoms arising from spin orbit coupling and crystal electric field lead to non-trivial magnetic ground states, remains in the forefront of research in condensed matter physics. Here, we present a comprehensive investigation on three-dimensional rare-earth based spin systems NdTaO4 and NdNbO4, where the Nd ions sit on a stretched diamond lattice. No signatures of long-range ordering and spin freezing are observed down to 1.

View Article and Find Full Text PDF

High-Conductivity, Self-Healing, and Adhesive Ionic Hydrogels for Health Monitoring and Human-Machine Interactions Under Extreme Cold Conditions.

Adv Sci (Weinh)

January 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Ionic conductive hydrogels (ICHs) are emerging as key materials for advanced human-machine interactions and health monitoring systems due to their unique combination of flexibility, biocompatibility, and electrical conductivity. However, a major challenge remains in developing ICHs that simultaneously exhibit high ionic conductivity, self-healing, and strong adhesion, particularly under extreme low-temperature conditions. In this study, a novel ICH composed of sulfobetaine methacrylate, methacrylic acid, TEMPO-oxidized cellulose nanofibers, sodium alginate, and lithium chloride is presented.

View Article and Find Full Text PDF

Zn(TFSI)-Mediated Ring-Opening Polymerization for Electrolyte Engineering Toward Stable Aqueous Zinc Metal Batteries.

Nanomicro Lett

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, People's Republic of China.

Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.

View Article and Find Full Text PDF

Cryopreservation, the use of very low temperatures to preserve structurally intact living cells and tissues, has seen exponential growth in the field of fertilization (IVF). In the last decade, cryopreservation of embryos and freeze-all protocols have become an essential aspect and a prerequisite for a successful IVF outcome. Moreover, vitrification, which is a fast and safe cryopreservation method, has proved to be an effective choice for cryopreserving gametes and embryos.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!