AI Article Synopsis

  • The study investigates how compounds like EGCG, GSE, and GT affect the absorption of heme iron in intestinal cells, finding that they inhibit this absorption in a concentration-dependent manner.
  • Ascorbic acid (vitamin C) can counteract the absorption inhibition by polyphenols at low concentrations, but not at higher concentrations, suggesting a balance in dietary intake is important.
  • Regular consumption of ascorbic acid can help enhance heme iron absorption from food containing low levels of polyphenols, highlighting the interaction between these dietary components.

Article Abstract

Unlabelled: Although heme iron is an important form of dietary iron, its intestinal absorption mechanism remains elusive. Our previous study revealed that (-)-epigallocatechin-3-gallate (EGCG) and grape seed extract (GSE) markedly inhibited intestinal heme iron absorption by reducing the basolateral iron export in Caco-2 cells. The aim of this study was to examine whether small amounts of EGCG, GSE, and green tea extract (GT) could inhibit heme iron absorption, and to test whether the inhibitory action of polyphenols could be offset by ascorbic acid. A heme-⁵⁵Fe absorption study was conducted by adding various concentrations of EGCG, GSE, and GT to Caco-2 cells in the absence and presence of ascorbic acid. Polyphenolic compounds significantly inhibited heme-⁵⁵Fe absorption in a dose-dependent manner. The addition of ascorbic acid did not modulate the inhibitory effect of dietary polyphenols on heme iron absorption when the cells were treated with polyphenols at a concentration of 46 mg/L. However, ascorbic acid was able to offset or reverse the inhibitory effects of polyphenolic compounds when lower concentrations of polyphenols were added (≤ 4.6 mg/L). Ascorbic acid modulated the heme iron absorption without changing the apical heme uptake, the expression of the proteins involved in heme metabolism and basolateral iron transport, and heme oxygenase activity, indicating that ascorbic acid may enhance heme iron absorption by modulating the intracellular distribution of ⁵⁵Fe. These results imply that the regular consumption of dietary ascorbic acid can easily counteract the inhibitory effects of low concentrations of dietary polyphenols on heme iron absorption but cannot counteract the inhibitory actions of high concentrations of polyphenols.

Practical Application: Bioactive dietary polyphenols inhibit heme iron absorption in a dose-dependent manner. The small amounts of polyphenolic compounds present in foods are capable of reducing heme iron transport across the intestinal enterocyte. However, the inhibitory effects of dietary polyphenolic compounds on heme iron absorption can be offset by ascorbic acid and can possibly be avoided by decreasing the consumption of polyphenols while simultaneously taking ascorbic acid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306181PMC
http://dx.doi.org/10.1111/j.1750-3841.2011.02184.xDOI Listing

Publication Analysis

Top Keywords

heme iron
44
iron absorption
36
ascorbic acid
36
dietary polyphenols
16
polyphenolic compounds
16
heme
14
iron
14
inhibit heme
12
absorption
12
absorption dose-dependent
12

Similar Publications

Secondary brain damageafter traumatic brain injury (TBI) involves oxidative stress, neuroinflammation, apoptosis, and necroptosis and can be reversed by understanding these molecular pathways. The objective of this study was to examine the impact of tasimelteon (Tasi) administration on brain injury through the nuclear factor erythroid 2-related factor 2 (NRF-2)/heme oxygenase-1 (HO-1) and receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like (MLKL) pathways in rats with TBI. Thirty-two male Wistar albino rats weighing 300-350 g were randomly divided into four groups: the control group, trauma group, Tasi-1 group (trauma + 1 mg/kg Tasi intraperitoneally), and Tasi-10 group (trauma + 10 mg/kg Tasi intraperitoneally).

View Article and Find Full Text PDF

Ulcerative colitis is a long-term inflammatory colon illness that significantly affects patients quality of life. Traditional medicines and therapies often come with challenges such as side effects, instability, unpredictability, and high costs. This has captured interest in natural products that have huge health benefits.

View Article and Find Full Text PDF

Mononuclear non-heme iron enzymes catalyze a wide array of important oxidative transformations. They are correspondingly diverse in both structure and mechanism. Despite significant evolutionary distance, it is becoming increasingly apparent that these enzymes nonetheless illustrate a compelling case of mechanistic convergence the formation of peroxo species bridging metal and substrate.

View Article and Find Full Text PDF

Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR.

View Article and Find Full Text PDF

Background: Erectile dysfunction (ED) is a prevalent male sexual disorder, commonly associated with hypertension, though the underlying mechanisms remain poorly understood.

Objective: This study aims to explore the role of Fatty acid synthase (Fasn) in hypertension-induced ED and evaluate the therapeutic potential of the Fasn inhibitor C75.

Materials And Methods: Erectile function was assessed by determining the intracavernous pressure/mean arterial pressure (ICP/MAP) ratio, followed by the collection of cavernous tissue for transcriptomic and non-targeted metabolomic analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!