Abstract Small ankyrin-1 is a splice variant of the ANK1 gene that binds to obscurin A. Previous studies have identified electrostatic interactions that contribute to this interaction. In addition, molecular dynamics (MD) simulations predict four hydrophobic residues in a 'hot spot' on the surface of the ankyrin-like repeats of sAnk1, near the charged residues involved in binding. We used site-directed mutagenesis, blot overlays and surface plasmon resonance assays to study the contribution of the hydrophobic residues, V70, F71, I102 and I103, to two different 30-mers of obscurin that bind sAnk1, Obsc₆₃₁₆₋₆₃₄₅ and Obsc₆₂₃₁₋₆₂₆₀. Alanine mutations of each of the hydrophobic residues disrupted binding to the high affinity binding site, Obsc₆₃₁₆₋₆₃₄₅. In contrast, V70A and I102A mutations had no effect on binding to the lower affinity site, Obsc₆₂₃₁₋₆₂₆₀. Alanine mutagenesis of the five hydrophobic residues present in Obsc₆₃₁₆₋₆₃₄₅ showed that V6328, I6332, and V6334 were critical to sAnk1 binding. Individual alanine mutants of the six hydrophobic residues of Obsc₆₂₃₁₋₆₂₆₀ had no effect on binding to sAnk1, although a triple alanine mutant of residues V6233/I6234/I6235 decreased binding. We also examined a model of the Obsc₆₃₁₆₋₆₃₄₅-sAnk1 complex in MD simulations and found I102 of sAnk1 to be within 2.2Å of V6334 of Obsc₆₃₁₆₋₆₃₄₅. In contrast to the I102A mutation, mutating I102 of sAnk1 to other hydrophobic amino acids such as phenylalanine or leucine did not disrupt binding to obscurin. Our results suggest that hydrophobic interactions contribute to the higher affinity of Obsc₆₃₁₆₋₆₃₄₅ for sAnk1 and to the dominant role exhibited by this sequence in binding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377380 | PMC |
http://dx.doi.org/10.3109/09687688.2012.660709 | DOI Listing |
ChemSusChem
January 2025
University of Milano-Bicocca: Universita degli Studi di Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20127, Milano, ITALY.
Laccases that oxidize low-density polyethylene (LDPE) represent a promising strategy for bioremediation purposes. To rationalize or optimize their PE-oxidative activity, two fundamental factors must be considered: the enzyme's redox potential and its binding affinity/mode towards LDPE. Indeed, a stable laccase-PE complex may facilitate a thermodynamically unfavorable electron transfer, even without redox mediators.
View Article and Find Full Text PDFFood Chem
January 2025
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Product Processing, Ministry of Agriculture, Beijing 100193, China; Zibo Institute for Digital Agriculture and Rural Research, Zibo 255051, China. Electronic address:
The study was designed to investigate the mechanism of Riboflavin (RF)-mediated UVA photosensitive oxidation on beef myofibrillar proteins (MP) oxidized at different storage times. To elucidate the direct relationship between RF and protein oxidation, the mechanism of action was analyzed in terms of amino acid and side chain residues, protein structure, and protein oxidative metabolism. Oxidation of MP resulted in significant changes in the levels of carbonyls, sulfhydryls, Lysine, Arginine, Threonin, and Histidine.
View Article and Find Full Text PDFFood Chem
January 2025
School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, China. Electronic address:
Anions have more pronounced effect on the aggregation power of proteins than cations. Herein, the effect of different types of anions on rice glutelin (RG) based fibrils formation was investigated. The fibrils yield and growth rate of RG were enhanced with various anions, due to the specific ions effect and intermolecular interaction.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon S7N 5A8, Saskatchewan, Canada. Electronic address:
A soluble fraction of faba bean protein was conjugated with tannic acid via the free-radical grafting method using a mixture of ascorbic acid and hydrogen peroxide. Surface plasmon resonance showed a strong bonding between them, while the free amino and thiol group measurements indicated tannic acid's bonding with the amino groups and cysteine residues on the proteins. Structural analysis using intrinsic fluorescence and surface hydrophobicity demonstrated tannic acid's interaction with the aromatic and hydrophobic amino acids of the protein.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Yonsei University, Incheon, Incheon, Korea, Republic of (South).
Background: As amyloid-β (Aβ) aggregates are considered as the biomarkers and key factors in the pathology of Alzheimer's disease, there has been extensive investigation into Aβ-targeting compounds for the development of diagnostics and drug discovery related to the disorder. However, the polymorphic and heterogenous nature of Aβ aggregates impedes the structural understanding of their structure. Consequently it is a major challenge to develop new diagnostic and therapeutic development of AD and to study the mechanism of Aβ-targeting compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!