Gonadotropin-releasing hormone: an update review of the antagonists versus agonists.

Int J Urol

Department of Urology, University Hospitals Leuven, Belgium Division of Urology, University of Toronto, Toronto, Ontario, Canada.

Published: July 2012

Gonadotropin-releasing hormone agonists and antagonists provide androgen-deprivation therapy for prostate cancer. Unlike agonists, gonadotropin-releasing hormone antagonists have a direct mode of action to block pituitary gonadotropin-releasing hormone receptors. There are two licensed gonadotropin-releasing hormone antagonists, degarelix and abarelix. Of these, degarelix is the more extensively studied and has been documented to be more effective than the well-established, first-line agonist, leuprolide, in terms of substantially faster onset of castration, faster suppression of prostate-specific antigen, no risk for testosterone surge or clinical flare, and improved prostate-specific antigen progression-free survival, suggesting a delay in castration resistance. Other than minor injection-site reactions, degarelix is generally well tolerated, without systemic allergic reactions and with most adverse events consistent with androgen suppression or the underlying condition. In conclusion, degarelix provides a rational, first-line androgen-deprivation therapy suitable for the treatment of prostate cancer, with faster onset of castration than with agonists, and no testosterone surge. Furthermore, data suggest that degarelix improves disease control compared with leuprolide, and might delay the onset of castration-resistant disease. In view of these clinical benefits and the lack of need for concomitant anti-androgen treatment, gonadotropin-releasing hormone antagonists might replace gonadotropin-releasing hormone agonists as first-line androgen-deprivation therapy in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1442-2042.2012.02997.xDOI Listing

Publication Analysis

Top Keywords

gonadotropin-releasing hormone
28
androgen-deprivation therapy
12
hormone antagonists
12
agonists gonadotropin-releasing
8
hormone agonists
8
prostate cancer
8
faster onset
8
onset castration
8
prostate-specific antigen
8
testosterone surge
8

Similar Publications

Background And Objective: A gonadotropin-releasing hormone (GnRH) agonist such as leuprolide is widely used to achieve sustained suppression of testosterone levels, which play a critical role in the treatment of prostate cancer. Recent advances in drug delivery systems have led to the development of long-acting depot formulations, such as the 6-month intramuscular (IM) leuprolide formulation, which aim to simplify dosing and improve convenience for both patients and healthcare providers. Exploring extended dosing intervals for such formulations represents a promising approach to further optimize treatment regimens, potentially balancing efficacy with patient-centered care.

View Article and Find Full Text PDF

Female infertility, which affects 10-20% of couples worldwide, is a growing health concern in developing countries. It can be caused by multiple factors, including reproductive disorders, hormonal dysfunctions, congenital malformations and infections. In vitro and in vivo studies have shown that plant extracts regulate gonadotropin-releasing hormone, kisspeptin, and gonadotropin expression and/or secretion at the hypothalamic-pituitary level and modulate somatic and germ cells, such as steroidogenesis, proliferation, apoptosis, and oxidative stress at the ovarian level.

View Article and Find Full Text PDF

Oral contraceptives (OCs) are approved for use after onset of menarche, which is well before brain maturation is complete. OC use may induce biochemical changes in the brain, especially during the neurobiologically dynamic adolescent/young adult years. MicroRNA cargo in L1CAM-associated extracellular vesicles was measured from serum samples collected from young women using the miRCURY LNA miRNA Focus PCR Panel (Qiagen) and validated using quantitative PCR.

View Article and Find Full Text PDF

Hypothalamic kisspeptin (Kiss1) neurons are vital for maintaining fertility in the mammal. In the female rodent, Kiss1 neurons populate the anteroventral periventricular/periventricular nuclei (Kiss1AVPV/PeN) and the arcuate nucleus (Kiss1ARH). Kiss1ARH neurons (a.

View Article and Find Full Text PDF

Distribution of the kisspeptin system and its relation with gonadotropin-releasing hormone in the hypothalamus.

Vitam Horm

January 2025

Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina. Electronic address:

Kisspeptin (KISS1), originally catalogued as metastin because of its capacity as a metastasis suppressor in human melanoma and breast cancer, is now recognized as the major puberty gatekeeper and gonadotropin-releasing hormone (GnRH) neuroendocrine system modulator. It is a member of the family of RFamide-related peptides that also includes the neuropeptide FF group, the gonadotropin-inhibitory hormone, the prolactin-releasing peptide, and the 26RFa peptides. The KISS1 precursor peptide is processed into a family of peptides known as kisspeptins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!