Background: Nanoparticles have recently gained interest as exogenous contrast agents in a variety of biomedical applications related to cancer detection and treatment. The objective of this study was to determine the potential of topically administered antibody conjugated gold nanorods (GNRs) for imaging squamous cell carcinomas (SCCs) of the skin using near-infrared narrowband imaging (NBI). Near-infrared (NIR) NBI images narrow wavelength bands to enhance contrast from plasmonic particles in a wide field portable and noncontact device that is clinically compatible for real-time tumor imaging and tumor margin demarcation.

Study Design: We conjugated GNRs to Cetuximab, a clinically approved humanized antibody that targets the epidermal growth factor receptor (EGFR), which is overexpressed on the surface of many tumor cells, especially SCCs. We excised subcutaneous xenografts of SCCs (A431) from Swiss nu/nu mice and divided the tumors into two groups: (1) the targeted group (Cetuximab conjugated GNRs) and (2) the control group (polyethylene glycol-conjugated GNRs). After topical application of particles and incubation for 30 minutes, the tumors were washed and imaged using NBI. In addition, we performed two-photon imaging to quantify the binding of EGFR targeted GNRs in tumors and their depth profile.

Results: The NBI images showed a visual increase in contrast from tumors after topical administration of targeted GNR. Targeted GNR tumors showed increased contrast compared to tumors administered with the control GNR. There was a statistically significant increase in mean pixel intensity (∼2.5×) from targeted GNR tumors (n = 6). Two-photon microscopy images of targeted GNRs confirmed their binding affinity to the EGF receptors over expressed in the A431 tumors.

Conclusion: We have demonstrated that a topical application of gold nanorods targeted specifically to tumor growth factor receptors results in a significantly higher image contrast compared to nontargeted gold nanorods. These results demonstrate the feasibility of near-infrared NBI to image and demarcate tumor margins during surgical resection using topical administration of targeted GNR.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lsm.22019DOI Listing

Publication Analysis

Top Keywords

gold nanorods
16
targeted gnr
16
imaging squamous
8
squamous cell
8
tumors
8
antibody conjugated
8
conjugated gold
8
nbi images
8
conjugated gnrs
8
growth factor
8

Similar Publications

Dissecting the anti-pancreatic cancer mechanism of gold nanorods mediate photothermal therapy through quantitative proteomics analysis.

Biochem Biophys Res Commun

January 2025

Department of Oncology, The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 110006, China. Electronic address:

Gold nanorods (GNRs) mediated photothermal therapy (PTT) represents a promising technique for cancer treatment, utilizing GNRs in conjunction with near-infrared (NIR) laser irradiation to convert energy into heat. In the present study, we employed PTT to induce apoptosis in pancreatic cancer cells and investigated its underlying mechanisms through quantitative proteomics analysis. Initially, we established that temperatures ranging from 47 to 51°C significantly enhance cellular apoptosis without inducing necrosis.

View Article and Find Full Text PDF

Development of a Novel Electrochemical Immunosensor for Rapid and Sensitive Detection of Sesame Allergens Ses i 4 and Ses i 5.

Foods

January 2025

School of Food and Biological Engineering, Engineering Research Center of Bio-Process of Ministry of Education, Anhui Province Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China.

Due to their lipophilicity and low content, the major sesame oleosin allergens, Ses i 4 and Ses i 5, are challenging to identify using conventional techniques. Then, a novel unlabeled electrochemical immunosensor was developed to detect the potential allergic activity of sesame oleosins. The voltammetric immunosensor was constructed using a composite of gold nanoparticles (AuNPs), polyethyleneimine (PEI), and multi-walled carbon nanotubes (MWCNTs), which was synthesized in a one-pot process and modified onto a glass carbon electrode to enhance the catalytic current of the oxygen reduction reaction.

View Article and Find Full Text PDF

Resolving Artifacts and Improving the Detection Limit in Circular Differential Scattering Measurement of Chiral and Achiral Gold Nanorods.

ACS Nano

January 2025

Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China.

Circular differential scattering (CDS) spectroscopy has been developed as a powerful method for the characterization of the optical activity of individual plasmonic nanostructures and their complexes with chiral molecules. However, standard measurement setups often result in artifacts that have long raised concerns on the interpretation of spectral data. In fact, the detection limit of CDS setups is constrained by the high level of artifacts, to ±10%.

View Article and Find Full Text PDF

Topical transdermal drug delivery for psoriasis remains a challenge because of the poor solubility of hydrophobic drugs and the limited penetration of the stratum corneum. In this study, a near-infrared (NIR) light-responsive thermosensitive hydrogel (PDLLA-PEG-PDLLA, PLEL)-based drug reservoir is developed that directly incorporated gold nanorods (GNRs) and methotrexate (MTX) in the sol state at low temperature, which is referred to as PLEL@GNR+MTX. The in vitro anti-psoriasis experiment indicated that, GNRs, as photothermal cores of composite hydrogel, not only triggered keratinocyte apoptosis but also promoted MTX release in a synergistic manner.

View Article and Find Full Text PDF

Thiol-terminated -halamine ligands to photothermal gold nanorods for synergistically combating antibiotic-resistant bacteria.

Soft Matter

January 2025

College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, P. R. China.

Bio-friendly antibacterial -halamine polymers were used to modify gold nanorods (GNR@pAMPS-Cl), which showed excellent antimicrobial activity against antibiotic-resistant bacteria and accelerated the healing of MRSA-infected wounds. This work provides a new strategy for the preparation of nanoscale antibacterial materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!