Background: Neuroblastoma (NBL) is a common pediatric solid tumor, and outcomes for patients with advanced neuroblastoma remain poor despite extremely aggressive treatment. Chemotherapy resistance at relapse contributes heavily to treatment failure. The poor survival of patients with high-risk NBL prompted this investigation into novel treatment options with the objective of gaining a better understanding of resistance mechanisms. On the basis of previous work and on data from publicly available studies, the authors hypothesized that human epidermal growth factor receptor 4 (Her4) contributes to resistance.

Methods: Her4 expression was reduced with small-hairpin RNA (shRNA) to over express intracellular HER4, and the authors tested its impact on tumor cell survival under various culture conditions. The resulting changes in gene expression after HER4 knockdown were measured by using a messenger RNA (mRNA) array.

Results: HER4 expression was up-regulated in tumor spheres compared with the expression in monolayer culture. With HER4 knockdown, NBL cells became less resistant to anoikis and serum starvation. Moreover, HER4 knockdown increased the chemosensitivity of NBL cells to cisplatin, doxorubicin, etoposide, and activated ifosfamide. In mRNA array analysis, HER4 knockdown predominately altered genes related to cell cycle regulation. In NBL spheres compared with monolayers, cell proliferation was decreased, and cyclin D expression was reduced. HER4 knockdown reversed cyclin D suppression. Overexpressed intracellular HER4 slowed the cell cycle and induced chemoresistance.

Conclusions: The current results indicated that HER4 protects NBL cells from multiple exogenous apoptotic stimuli, including anoikis, nutrient deficiency, and cytotoxic chemotherapy. The intracellular fragment of HER4 was sufficient to confer this phenotype. HER4 functions as a cell cycle suppressor, maintaining resistance to cellular stress. The current findings indicate that HER4 overexpression may be associated with refractory disease, and HER4 may be an important therapeutic target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3414637PMC
http://dx.doi.org/10.1002/cncr.27496DOI Listing

Publication Analysis

Top Keywords

her4 knockdown
20
her4
16
nbl cells
12
cell cycle
12
her4 protects
8
cellular stress
8
her4 expression
8
expression reduced
8
intracellular her4
8
spheres compared
8

Similar Publications

Novel Pathways between Invasiveness Modulators in Breast Cancer Single Cells.

Crit Rev Eukaryot Gene Expr

December 2023

Department of Pathology, Saint Louis University School of Medicine, 709 St. James Drive, Saint Louis, Missouri 63119.

Individual cells are known to behave differently than their whole populations of cells. The present work focused on proteins that control cancer invasiveness. Individual Dicer siRNA knockdown of HER4, CDC42, and E-cadherin decreased MMP1 mRNA levels in SCP2, a cancer single-cell progeny that is highly metastatic to bone and adrenal gland.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis.

View Article and Find Full Text PDF

Unlabelled: Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis.

View Article and Find Full Text PDF

HB-EGF upregulates StAR expression and stimulates progesterone production through ERK1/2 signaling in human granulosa-lutein cells.

Cell Commun Signal

October 2022

Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, China.

Background: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) belongs to the epidermal growth factor (EGF) family of growth factors. HB-EGF and its receptors, epidermal growth factor receptor (EGFR) and HER4, are expressed in the human corpus luteum. HB-EGF has been shown to regulate luteal function by preventing cell apoptosis.

View Article and Find Full Text PDF

Studies have reported a relationship between human epidermal growth factor receptor 4 (HER4), a ubiquitously expressed and unique member of the ErbB family, and clinicopathological features of osteosarcoma. However, further investigation is warranted. HER4 expression was analyzed by quantitative reverse transcription-polymerase chain reaction, western blotting, and immunohistochemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!