A new ligand p-[N-2-(2'-pyridyl)benzimidazolyl]-[N-2-(2'-pyridyl)indolyl]-benzene (L1) has been synthesized and fully characterized. L1 has two distinct chelating sites: one N,N-chelate site and one N,C-chelate site. This ligand has been found to be very effective in selective binding to two different metal ions. Two new heterobimetallic complexes Ru-Pt and Ru-Pd using L1 as the bridging ligand have been successfully synthesized and fully characterized. To understand the mutual influence of the two metal centers on electronic and photophysical properties, the corresponding monometallic Ru(II), Pt(II) and Pd(II) compounds have also been synthesized and investigated. All Ru(II)-containing complexes have been found to be luminescent. Electronic communication between the two different metal centers in the heterobimetallic compounds was found to be weak. The Pt(II) moiety appears to enhance the phosphorescent efficiency of the Ru(II) unit while the Pd(II) analogue has little influence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2dt00015f | DOI Listing |
Chemistry
April 2017
Strategic Research Cluster for Solar Energy Conversion, School of Chemical Sciences, Dublin City University, Dublin, 9, Ireland.
The synthesis, photophysical properties and photocatalytic efficiency of a range of novel supramolecular assemblies of the type [Ru(dceb) (μ-bisbpy)MCl ][PF ] and [Ru(bpy) (μ-bisbpy)MCl ][PF ] (M=Pd or Pt, dceb=diethyl 2,2'-bipyridine-4,4'-dicarboxylate, bpy=2,2'-bipyridine and bisbpy=2,2':5',3'':6'',2'''-quaterpyridine) are reported. Photocatalytic hydrogen generation was dependent on the nature of the peripheral ligand, on the catalytic centre and on the amount of water present in the photocatalytic mixture. The best catalytic conditions were obtained with the dceb peripheral ligand (turnover numbers up to 513 after 18 h).
View Article and Find Full Text PDFChemphyschem
September 2016
MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
The effect of the catalytic moiety on the early-time photodynamics of Ru/M (M=Pt or Pd) bimetallic photocatalysts is studied by ultrafast transient absorption spectroscopy. In comparison to the Ru/Pd photocatalyst described earlier, the Ru/Pt analogue shows complex excited-state dynamics with three distinct kinetic components ranging from sub-ps to 10(2) ps, requiring a more sophisticated photophysical model than that developed earlier for the Ru/Pd complex. In the Pu/Pt photocatalyst, an additional lower-lying excited state is proposed to quench the hot higher-lying triplet metal-to-ligand charge-transfer states.
View Article and Find Full Text PDFEarth Planet Sci Lett
August 2015
Department of Geology, University of Maryland, College Park, MD 20742, USA.
Coupled Os/Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundance data are reported for Apollo 12 (12005, 12009, 12019, 12022, 12038, 12039, 12040), Apollo 15 (15555) and Apollo 17 (70135) mare basalts, along with mare basalt meteorites La Paz icefield (LAP) 04841 and Miller Range (MIL) 05035. The most magnesian samples have chondrite-relative HSE abundances and chondritic measured and calculated initial Os/Os, with mare basalts having consistently low HSE abundances at ~2 ×10 to 2 ×10 the chondritic abundance. The lower and more fractionated HSE compositions of evolved mare basalts can be reproduced with bulk-partition coefficients of ~2 for Os, Ir, Ru, Pt and Pd and ~1.
View Article and Find Full Text PDFDalton Trans
May 2012
Department of Chemistry, Queen's University, Kingston, Ontario, Canada.
A new ligand p-[N-2-(2'-pyridyl)benzimidazolyl]-[N-2-(2'-pyridyl)indolyl]-benzene (L1) has been synthesized and fully characterized. L1 has two distinct chelating sites: one N,N-chelate site and one N,C-chelate site. This ligand has been found to be very effective in selective binding to two different metal ions.
View Article and Find Full Text PDFInorg Chem
August 2010
Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505, Japan.
Treatment of incomplete cubane-type clusters [(Cp*M){Re(L)}(2)(mu(3)-S)(mu(2)-S)(3)] (M = Ir (1a), Rh (1b); Cp* = eta(5)-C(5)Me(5); L = S(2)C(2)(SiMe(3))(2)) and [{(Pmb)Ru}{Re(L)}(2)(mu(3)-S)(mu(2)-S)(3)] (Pmb = eta(6)-C(6)Me(5)H) with 1 equiv of [Pt(PPh(3))(3)] gave tetranuclear tetra(sulfido) clusters having raft-type cores, [(Cp*M){Pt(PPh(3))(2)}{Re(L)}(2)(mu(3)-S)(4)] (M = Ir (3a), Rh) and [{(Pmb)Ru}{Pt(PPh(3))(2)}{Re(L)}(2)(mu(3)-S)(4)], which presents a sharp contrast to the reactions with [Pd(PPh(3))(4)] reported previously, affording the cubane-type clusters [(Cp*M){Pd(PPh(3))}{Re(L)}(2)(mu(3)-S)(4)] (M = Ir (2a), Rh) and [{(Pmb)Ru}{Pd(PPh(3))}{Re(L)}(2)(mu(3)-S)(4)]. The reactions of 2a with diphosphines P2 resulted in the conversion of its cubane-type core into the analogous raft-type frameworks, forming [(Cp*Ir){Pd(P2)}{Re(L)}(2)(mu(3)-S)(4)] (P2 = cis-Ph(2)PCH=CHPPh(2) (6), Ph(2)PCH(2)CH(2)PPh(2), Ph(2)PCH(2)CH(2)CH(2)PPh(2)). On the other hand, when 2 was allowed to react with Ph(2)PCH(2)PPh(2) (dppm) as P2, the trinuclear tri(sulfido) cluster [(Cp*Ir){Re(L)}(2)(mu(3)-S)(2)(mu(2)-S)(mu(2)-dppm)] (9a) was obtained.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!