Endoplasmic reticulum-mitochondria coupling: local Ca²⁺ signalling with functional consequences.

Pflugers Arch

Department of Physiology, Anatomy and Genetics Sherrington Building, South Parks Road, Oxford, OX1 3PT, UK.

Published: July 2012

Plasma membrane store-operated Ca²⁺ release-activated Ca²⁺ (CRAC) channels are a widespread and conserved Ca²⁺ influx pathway, driving activation of a range of spatially and temporally distinct cellular responses. Although CRAC channels are activated by the loss of Ca²⁺ from the endoplasmic reticulum, their gating is regulated by mitochondria. Through their ability to buffer cytoplasmic Ca²⁺, mitochondria take up Ca²⁺ released from the endoplasmic reticulum by InsP₃ receptors, leading to more extensive store depletion and stronger activation of CRAC channels. Mitochondria also buffer Ca²⁺ that enters through CRAC channels, reducing Ca²⁺-dependent slow inactivation of the channels. In addition, depolarised mitochondria impair movement of the CRAC channel activating protein STIM1 across the endoplasmic reticulum membrane. Because they regulate CRAC channel activity, particularly Ca²⁺-dependent slow inactivation, mitochondria influence CRAC channel-driven enzyme activation, secretion and gene expression. Mitochondrial regulation of CRAC channels therefore provides an important control element to the regulation of intracellular Ca²⁺ signalling.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-012-1095-xDOI Listing

Publication Analysis

Top Keywords

crac channels
20
endoplasmic reticulum
12
ca²⁺
9
ca²⁺ signalling
8
crac
8
ca²⁺-dependent slow
8
slow inactivation
8
crac channel
8
channels
6
mitochondria
5

Similar Publications

The involvement of neurons in the peripheral nervous system is crucial for bone regeneration. Mimicking extracellular matrix cues provides a more direct and effective strategy to regulate neuronal activity and enhance bone regeneration. However, the simultaneous coupling of the intrinsic mechanical-electrical microenvironment of implants to regulate innervated bone regeneration has been largely neglected.

View Article and Find Full Text PDF

The TRP Channels Serving as Chemical-to-Electrical Signal Converter.

Physiol Rev

January 2025

Department of Physiology and Membrane Biology, University of California, Davis, School of Medicine, Davis CA, 95616, USA.

Biology uses many signaling mechanisms. Among them, calcium and membrane potential are two prominent mediators for cellular signaling. TRPM4 and TRPM5, two calcium-activated monovalent cation-conducting ion channels, offer a direct linkage between these two signals.

View Article and Find Full Text PDF

Inflammation is a physiological response of the immune system to infectious agents or tissue injury, which involves a cascade of vascular and cellular events and the activation of biochemical pathways depending on the type of harmful agent and the stimulus generated. The Kunitz peptide HCIQ2c1 of sea anemone is a strong protease inhibitor and exhibits neuroprotective and analgesic activities. In this study, we investigated the anti-inflammatory potential of HCIQ2c1 in histamine- and lipopolysaccharide (LPS)-activated RAW 264.

View Article and Find Full Text PDF

Background: Dystonia is a common neurological hyperkinetic movement disorder that can be caused by mutations in anoctamin 3 (ANO3, TMEM16C), a phospholipid scramblase and ion channel. We previously reported patients that were heterozygous for the ANO3 variants S651N, V561L, A599D and S651N, which cause dystonia by unknown mechanisms.

Methods: We applied electrophysiology, Ca measurements and cell biological methods to analyze the molecular mechanisms that lead to aberrant intracellular Ca signals and defective activation of K channels in patients heterozygous for the ANO3 variants.

View Article and Find Full Text PDF

Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!