Microchip electrophoresis (ME) with electrochemical detection was used to monitor nitric oxide (NO) production from diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA/NO) and 1-(hydroxyl-NNO-azoxy)-L-proline disodium salt (PROLI/NO). NO was generated through acid hydrolysis of these NONOate salts. The products of acid hydrolysis were introduced into a 5-cm separation channel using gated injection. The separation was accomplished using reverse polarity and a background electrolyte consisting of 10 mM boric acid and 2 mM tetradecyltrimethylammonium bromide, pH 11. Electrochemical detection was performed using an isolated potentiostat in an in-channel configuration. Potentials applied to the working electrode, typically higher than +1.0 V vs. Ag/AgCl, allowed the direct detection of nitrite, NO, DEA/NO, and PROLI/NO. Baseline resolution was achieved for the separation of PROLI/NO and NO while resolution between DEA/NO and NO was poor (1.0 ± 0.2). Nitrite was present in all samples tested.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000425PMC
http://dx.doi.org/10.1007/s00216-012-5810-4DOI Listing

Publication Analysis

Top Keywords

microchip electrophoresis
8
nitric oxide
8
nonoate salts
8
electrochemical detection
8
acid hydrolysis
8
electrophoresis amperometric
4
detection
4
amperometric detection
4
detection study
4
study generation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!