5,6-Dimethylxanthenone-4-acetic acid (DMXAA), a potent vascular disrupting agent, selectively destroys established tumor vasculature, causing a rapid collapse in blood flow that ultimately leads to inhibition of tumor growth. Here, we demonstrate that p38 MAPK is critically involved in DMXAA-induced cytoskeleton reorganization in endothelial cells and tumor necrosis factor-α (TNF-α) production in macrophages, both of which were essential for DMXAA-induced vascular disruption. Inhibition of p38 mitogen-activated protein kinase (MAPK) significantly attenuated DMXAA-induced actin cytoskeleton reorganization in human umbilical vein endothelial cells and TNF-α production in macrophages. In vivo, p38 MAPK inhibition attenuated the immediate reduction in tumor blood flow induced by DMXAA treatment (<30 min) by inhibiting actin cytoskeleton reorganization in tumor vascular endothelial cells and blunted the long-lasting (>4 h) DMXAA-induced shutdown of the tumor vasculature by inhibiting intratumoral TNF-α production. These results indicate that p38 MAPK plays a critical role in DMXAA-induced endothelial cell cytoskeleton reorganization and TNF-α production, thus regulating DMXAA-induced antitumor activity.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.112.191635DOI Listing

Publication Analysis

Top Keywords

tnf-α production
16
p38 mapk
12
cytoskeleton reorganization
12
p38 mitogen-activated
8
mitogen-activated protein
8
protein kinase
8
antitumor activity
8
vascular disrupting
8
disrupting agent
8
56-dimethylxanthenone-4-acetic acid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!