Acute kidney injury is associated with a significant inflammatory response that has been the target of renoprotection strategies. Epoxyeicosatrienoic acids (EETs) are anti-inflammatory cytochrome P450-derived eicosanoids that are abundantly produced in the kidney and metabolized by soluble epoxide hydrolase (sEH; Ephx2) to less active dihydroxyeicosatrienoic acids. Genetic disruption of Ephx2 and chemical inhibition of sEH were used to test whether the anti-inflammatory effects of EETs, and other lipid epoxide substrates of sEH, afford protection against cisplatin-induced nephrotoxicity. EET hydrolysis was significantly reduced in Ephx2(-/-) mice and was associated with an attenuation of cisplatin-induced increases in serum urea nitrogen and creatinine levels. Histological evidence of renal tubular damage and neutrophil infiltration was also reduced in the Ephx2(-/-) mice. Likewise, cisplatin had no effect on renal function, neutrophil infiltration, or tubular structure and integrity in mice treated with the potent sEH inhibitor 1-adamantan-1-yl-3-(1-methylsulfonyl-piperidin-4-yl-urea) (AR9273). Consistent with the ability of EETs to interfere with nuclear factor-κB (NF-κB) signaling, the observed renoprotection was associated with attenuation of renal NF-κB activity and corresponding decreases in the expression of tumor necrosis factor (TNF) α, TNF receptor (TNFR) 1, TNFR2, and intercellular adhesive molecule-1 before the detection of tubular injury. These data suggest that EETs or other fatty acid epoxides can attenuate cisplatin-induced kidney injury and sEH inhibition is a novel renoprotective strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3362876 | PMC |
http://dx.doi.org/10.1124/jpet.111.191247 | DOI Listing |
Biomedicines
December 2024
Research Institute of Aging and Metabolism, School of Medicine, Kyungpook National University, Daegu 41404, Republic of Korea.
Cisplatin nephrotoxicity is a significant clinical issue, and currently, no approved drug exists to prevent cisplatin-induced acute kidney injury (AKI). This study investigated whether sodium phenylbutyrate (4-PBA), a chemical chaperone, can prevent cisplatin-induced AKI. Six consecutive days of intraperitoneal injections of 4-PBA were administered in a murine model before and after the cisplatin challenge.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Division of Nephrology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
Cisplatin is a commonly used chemotherapeutic agent in the treatment of a wide array of cancers. Due to its active transport into the kidney proximal tubule cells, cisplatin treatment can cause a buildup of this nephrotoxic compound in the kidney, resulting in acute kidney injury (AKI). About 30% of patients receiving cisplatin chemotherapy develop cisplatin-induced AKI.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Trauma Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China. Electronic address:
Background: Cisplatin-induced acute kidney injury (CKI) represents a severe renal dysfunction characterized by DNA damage and tubular injury. Fraxetin, derived from the Chinese herb Qinpi (Fraxinus bungeana A.DOC), is recognized for its neuroprotective effects and has been used for the prevention of various diseases.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China. Electronic address:
Ethnopharmacological Relevance: Ginger (Zingiber officinale Rosc.) is a traditional anti-emetic herb. 6-shogaol, the main active compound of ginger, is reported to possess a variety of bioactivities.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
Acute kidney injury (AKI) is a prevalent clinical syndrome with high morbidity and mortality. Accumulating studies suggest mitochondrial dysfunction as the typical characteristics and key process of AKI, but the underlying mechanism remains elusive. The YME1-like 1 (YME1L1) ATPase, an inner mitochondrial membrane protein, is screened and identified to be downregulated in renal tubular epithelial cells of various mouse models and patients of AKI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!