A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Collateral damage and compensatory changes after injection of a toxin targeting neurons with the neurokinin-1 receptor in the nucleus tractus solitarii of rat. | LitMetric

Injection into the nucleus tractus solitarii (NTS) of toxins that target substance P (SP) receptors ablates neurons that express neurokinin-1 (NK1) receptors, attenuates baroreflexes, and results in increased lability of arterial pressure. We and others have shown that the toxin leads to loss of neurons containing SP receptors and loss of GABAergic neurons in the NTS; but given that neither type neuron is thought to be integral to baroreflex transmission in NTS, mechanisms responsible for the cardiovascular changes remained unclear. Because NK1 receptors colocalize with N-methyl-d-aspartate (NMDA) receptors and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in NTS and because glutamate transmission may be integral to baroreflex transmission in the NTS we hypothesized that the toxic lesions may interrupt mechanisms for glutamate transmission. Interruption of those mechanisms could be responsible for the cardiovascular effects. We tested the hypothesis by performing fluorescent immunohistochemistry, confocal microscopy and image analysis after injecting stabilized SP-SAP (SSP-SAP) unilaterally into the NTS. We assessed changes in immunoreactivity (IR) of NMDA receptor subunit 1 (NMDAR1), AMPA receptor subunit 2 (GluR2), and 3 types of vesicular glutamate transporters (VGluT) as well as IR of gamma-aminobutyric acid receptors type b (GABAb), neuronal nitric oxide synthase (nNOS), tyrosine hydroxylase (TH), and protein gene product 9.5 (PGP 9.5), a neuronal marker, in the NTS. When compared to that of the same section of the un-injected NTS, IR decreased significantly in the injected side for NMDAR1 (p<0.01), GluR2 (p<0.01), VGluT3 (p<0.01), GABAb (p<0.001), and PGP9.5 (p<0.001). In contrast, IR for VGluT1 (p<0.001), VGluT2 (p<0.001), nNOS (p<0.001), and TH (p<0.001) increased significantly. We conclude that pathologic effects following ablation of neurons with NK1 receptors in NTS may result from interruption of neurotransmission through other neurochemical systems associated with NK1 receptors-containing neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3341473PMC
http://dx.doi.org/10.1016/j.jchemneu.2012.02.001DOI Listing

Publication Analysis

Top Keywords

nucleus tractus
8
tractus solitarii
8
nts
8
nk1 receptors
8
integral baroreflex
8
baroreflex transmission
8
transmission nts
8
mechanisms responsible
8
responsible cardiovascular
8
glutamate transmission
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!