Parathyroid hormone-related protein (PTHrP) is an important modulator of bone formation. Recently, we reported that PTHrP (107-111) (osteostatin) coating onto mesoporous ceramics confers osteogenic activity to these materials. Bone repair is dramatically compromised in osteopenia/osteoporosis. Thus, we examined the efficacy of unmodified and organically modified SBA15 ceramics loaded with osteostatin in promoting bone repair in an osteoporotic rabbit model. Osteoporosis was induced in New Zealand rabbits by methylprednisolone administration, and healthy rabbits were used as controls. Tested materials were implanted into a femoral cavitary defect, and animals were sacrificed at 2 weeks post-implantation. At this time, implants were encapsulated by a variable layer of fibrotic tissue with no evidence of inflammation. Similarly to observations in normal rabbits, both types of osteostatin-loaded bioceramics induced tissue regeneration associated with increased staining for PCNA, Runx2, osteopontin, and/or vascular endothelial growth factor in osteoporotic rabbits. Our present findings demonstrate that these osteostatin-bearing bioceramics increase the early repair response not only in normal bone but also in osteoporotic bone after a local injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2012.03.014DOI Listing

Publication Analysis

Top Keywords

mesoporous ceramics
8
bone repair
8
bone
6
osteostatin-loaded mesoporous
4
ceramics improves
4
improves early
4
early phase
4
phase bone
4
bone regeneration
4
regeneration rabbit
4

Similar Publications

Hf Doping Boosts the Excellent Activity and Durability of Fe-N-C Catalysts for Oxygen Reduction Reaction and Li-O Batteries.

Nanomaterials (Basel)

December 2024

The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Developing highly active and durable non-noble metal catalysts is crucial for energy conversion and storage, especially for proton exchange membrane fuel cells (PEMFCs) and lithium-oxygen (Li-O) batteries. Non-noble metal catalysts are considered the greatest potential candidates to replace noble metal catalysts in PEMFCs and Li-O batteries. Herein, we propose a novel type of non-noble metal catalyst (Fe-Hf/N/C) doped with Hf into a mesoporous carbon material derived from Hf-ZIF-8 and co-doping with Fe and N, which greatly enhanced the activity and durability of the catalyst.

View Article and Find Full Text PDF

Mesoporous Lanthanum-Doped Magnesium Phosphate Nanopowders Promote Healing of Critical-Size Bone Defects: An In Vivo Study.

J Biomed Mater Res B Appl Biomater

January 2025

Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt.

Treating severe bone deformities and abnormalities continues to be a major clinical hurdle, necessitating the adoption of suitable materials that can actively stimulate bone regeneration. Magnesium phosphate (MP) is a material that has the ability to stimulate the growth of bones. The current study involved the synthesis of mesoporous MP and lanthanum (La)-doped nanopowders using a chemical precipitation approach.

View Article and Find Full Text PDF

Small colony variant (SCV) is strongly linked to antibiotic resistance and the persistence of osteomyelitis. However, the intrinsic phenotypic instability of SCV has hindered a thorough investigation of its pathogenic mechanisms. In this study, phenotypically stable SCV strains are successfully recovered from clinical specimens, characterized by elevated drug resistance and reduced immunogenicity.

View Article and Find Full Text PDF

Accelerating Tandem Electroreduction of Nitrate to Ammonia via Multi-Site Synergy in Mesoporous Carbon-Supported High-Entropy Intermetallics.

Adv Mater

December 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China.

The electrochemical nitrate reduction reaction (NO RR) for ammonia (NH) synthesis represents a significant technological advancement, yet it involves a cascade of elementary reactions alongside various intermediates. Thus, the development of multi-site catalysts for enhancing NO RR and understanding the associated reaction mechanisms for NH synthesis is vital. Herein, a versatile approach is presented to construct platinum based high-entropy intermetallic (HEI) library for NH synthesis.

View Article and Find Full Text PDF

The deployment of magnetically responsive and polymeric materials to remove dyes that are hazardous in aquatic environments has profoundly revolutionized environmental sustainability. This study focuses on removing the hazardous cationic Malachite Green (MG) dye from solutions, employing a novel magnetic composite film as an adsorbent, designated as AgCo FeO (ACFCeP). The composite was synthesized solvent casting, incorporating AgCo FeO nanoparticles and CeO into a cellulose acetate/polyvinylpyrrolidone (CA/PVP) polymer matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!