A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The role of peroxidation of mitochondrial membrane phospholipids in pancreatic β -cell failure. | LitMetric

The role of peroxidation of mitochondrial membrane phospholipids in pancreatic β -cell failure.

Curr Diabetes Rev

Division of Experimental Diabetes and Aging, Department of Geriatrics and Palliative Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.

Published: January 2012

Type 2 diabetes (T2D) is characterized by peripheral insulin resistance and pancreatic islet β-cell failure. Accumulating evidence indicates that mitochondrial dysfunction is a central contributor to β-cell failure in the pathogenesis of T2D. This review focuses on mechanisms whereby reactive oxygen species (ROS) produced by β-cell in response to metabolic stress affect mitochondrial structure and function and lead to β-cell failure. Specifically, ROS oxidize mitochondrial membrane phospholipids such as cardiolipin, which impairs membrane integrity and leads to cytochrome c release and apoptosis. In addition, ROS activate UCP2 via peroxidation of the mitochondrial membrane phospholipids, which results in proton leak leading to reduced ATP synthesis and content in β-cells - critical parameters in the regulation of glucose-stimulated insulin secretion. Group VIA Phospholipase A2 (iPLA2β) appears to be a component of a mechanism for repairing mitochondrial phospholipids that contain oxidized fatty acid substituents, and genetic or acquired iPLA2β-deficiency increases β-cell mitochondrial susceptibility to injury from ROS and predisposes to development of T2D. Interventions that attenuate the adverse effects of ROS on β-cell mitochondrial phospholipids may prevent or retard the development of T2D.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4884441PMC
http://dx.doi.org/10.2174/157339912798829232DOI Listing

Publication Analysis

Top Keywords

mitochondrial membrane
12
membrane phospholipids
12
β-cell failure
12
mitochondrial
8
peroxidation mitochondrial
8
mitochondrial phospholipids
8
β-cell mitochondrial
8
development t2d
8
β-cell
6
phospholipids
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!