We report here fabrication of silver (0 to 1.76 mol%) doped PbS nanowires (radius r approximately 1.75 nm) in polymer by a simple wet chemical process. An X-ray photoelectron spectroscopy study clearly confirms the possibility of silver (Ag) doping in PbS nanowires. Both absorption and photoluminescence spectra reveal very strong quantum confinement effect in PbS nanowires as expected for a r/Bohr radius ratio approximately 0.0972 nm. Visible excitonic emission is observed at room temperature in the photoluminescence spectra of undoped and silver doped PbS nanowires in polymer. The excitonic emission is appreciably blue-shifted when doped by silver (1.76 mol%) indicating strong modification of the electronic states by magnetic silver ions. While Ag2+ centers at the substitutional lattice site show an emission band around 525 nm, Ag0 at the interstitial site act as nonradiative recombination centers. Effect of silver doping on the luminescence intensity is also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2011.5009 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
Cellulose is attracting considerable attention in the field of flexible electronics due to its unique properties and environmental sustainability, particularly as a substrate for flexible devices. Flexible photodetectors are an integral part of cellulose-based devices and have become essential in optical communication, heart rate monitoring, and imaging systems. The performance and adaptability of these photodetectors depend significantly on the quality of the flexible substrates.
View Article and Find Full Text PDFBME Front
September 2024
Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, México.
We conducted a comprehensive physicochemical analysis of one-dimensional ZnO nanowires (1DZnO), incorporating anti-CYFRA 21-1 immobilization to promote fast optical biomarker detection up to 10 ng ml. This study highlights the effectiveness of proof-of-concept 1DZnO nanoplatforms for rapid cancer biomarker detection by examining the nanoscale integration of 1DZnO with these bioreceptors to deliver reliable photoluminescent output signals. The urgent need for swift and accurate prognoses in healthcare settings drives the rise of sensitive biosensing nanoplatforms for cancer detection, which has benefited from biomarker identification.
View Article and Find Full Text PDFRSC Adv
September 2024
Physics Division, Department of Basic Sciences and Social Sciences, School of Technology, North-Eastern Hill University Shillong Meghalaya 793022 India
Bifenthrin (BF), a widely used pyrethroid pesticide in farming, lacks highly sensitive and selective sensors despite its extensive application. Ruthenium complexes are very effective for selective sensing applications but suffer from structural instability at elevated conditions, electrochemical activity, and the use of costly electrolytes. This work improves their electrochemical activity and mechanical strength by incorporating silver nanowires and replacing the costly electrolyte with abundant KCl + PBS, resulting in enhanced signal performance.
View Article and Find Full Text PDFHeliyon
September 2024
Atomic Energy Commission, Department of Physics, P. O. Box 6091, Damascus, Syria.
ZnS is an appealing material with wide potential applications in optoelectronics, sensors, and photocatalysis due to its fascinating properties, low cost, and eco-friendly. In this paper, we report the synthesis of ZnS nanowires and nanorods via a simple thermal-evaporation method using different concentrations of PbS as a dopant. The prepared nanostrutures were investigated in detalis using a scanning electron microscopy (SEM), X-ray diffraction (XRD), and high resolution transmission electron microscopy (HRTEM).
View Article and Find Full Text PDFMaterials (Basel)
July 2024
Department of Mechanical and Aerospace Engineering, University of Missouri, Lafferre Hall, Columbia, MO 65211, USA.
The objective of this study was to evaluate the effectiveness of trimethylsilane (TMS) plasma nanocoatings in protecting silver nanowires (AgNWs) from degradation and thus to improve their stability. TMS plasma nanocoatings at various thicknesses were deposited onto AgNWs that were prepared on three different substrates, including glass, porous styrene-ethylene-butadiene-styrene (SEBS), and poly-L-lactic acid (PLLA). The experimental results showed that the application of TMS plasma nanocoatings to AgNWs induced little increase, up to ~25%, in their electrical resistance but effectively protected them from degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!