The 20% concentration Eu3+-based red-emitting phosphor, nano-sized La6MoO12:Eu3+ was prepared by the Pechini method. X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), photoluminescence (PL), and decay curves were used to characterize the resulting samples. The phosphor can be efficiently excited by near UV light and exhibits an intense red luminescence corresponding to the electric dipole transition 5D0 --> 7F2 at 615 nm. When the phosphor was mixed into poly(vinyl alcohol) aqueous solution, the fluorescent nanofibers could be prepared by electrospinning process. It was suggested that the La6MoO12:Eu3+ phosphor would be a promising red component for solid-state lighting devices based on InGaN or GaN light-emitting diodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2011.5245 | DOI Listing |
This study investigates the modulations in the optical properties of cationic surfactant cetylpyridinium chloride (CPC) and hydrazine-mediated copper nanoclusters (CuNCs). By employing a bottom-up approach, we demonstrate the formation of blue-emitting CuNCs facilitated by CPC and hydrazine, where hydrazine acts both as a reducing and stabilizing agent. The optical properties of the CuNCs were systematically tuned by varying the chain length of the diamine, resulting in emissions ranging from blue to yellow.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin 300130, PR China. Electronic address:
Fluoroquinolone antibiotic residues, ofloxacin (OFX) have aroused more attention because of their serious influence on surface water and food area, which seriously affect human health. Herein, a visible and high-performance sensor method for detecting OFX is fabricated successfully by co-assembling bimetallic Ln (Eu/Tb) and amino-clay named EuTb(BZ)@AC. By changing the ultraviolet excitation wavelength, the sensor displayed high sensitivity and low detection limit to OFX in different modes of detection OFX, which are ratiometric luminescent sensor and turn-on luminescent sensor approaches.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China.
Elemental analysis, infrared spectroscopy, and X-ray single crystal diffraction indicated that a novel metal-organic framework (Tb-MOF) designated as 0.5n[Hbpy]·[Tb(dpa)(HO)]·4nHO was synthesized successfully, (where Hdpa = 5-(3, 4-dicarboxy- phenoxy) isophenic acid, bpy = protonated 4,4'-bipyridine). Tb-MOF adopts a 3D network structure based on Tb ions and the (dpa) ligand through µ: η, η, η, η binding modes.
View Article and Find Full Text PDFACS Nano
January 2025
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China.
Helical structures such as right-handed double helix for DNA and left-handed α-helix for proteins in biological systems are inherently chiral. Importantly, chirality at the nanoscopic level plays a vital role in their macroscopic chiral functionalities. In order to mimic the structures and functions of natural chiral nanoarchitectures, a variety of chiral nanostructures obtained from artificial helical polymers are prepared, which can be directly observed by atomic force microscopy (AFM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Zhenjiang College, Zhenjiang, 212000, PR China.
Ascorbic acid (AA) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of AA is harmful to humans. Therefore, the detection of Fe and AA is generally recognized to be meaningful.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!