The synthesis, electrochemical and photophysical properties of a branched molecule 3,5-bis(pyrene-1-yl)-4'-phenyl-2,2':6',2″-terpyridine are reported. Spectroscopy in different solvents reveals that an optical electron transfer from the pyrene donor to the terpyridyl electron acceptor can occur in polar media, as the system displays both charge transfer (CT) absorption and CT emission. Furthermore, the study of the zinc complex as well as the bis-protonated form shows an enhancement of the electron transfer character of the system, by an increase of the acceptor strength. This is accompanied by a large increase of the non-radiative processes. With sub-nanosecond transient absorption spectroscopy, the CT state, consisting of the pyrene radical cation and the terpyridine radical anion, has been detected. At room temperature, the study of the nanosecond transient absorption spectra reveals the formation of a low-lying triplet excited state that we attribute to the pyrene moiety through which the CT state decays. At 77K, the absence of the terpyridine triplet emission also suggests the population of a low-lying triplet state of the pyrene unit.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297157 | PMC |
http://dx.doi.org/10.3390/s90503604 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
Intensified host-guest electronic interplay within stable metal-organic cages (MOCs) presents great opportunities for applications in stimuli response and photocatalysis. Zr-MOCs represent a type of robust discrete hosts for such a design, but their host-guest chemistry in solution is hampered by the limited solubility. Here, by using pyridinium-derived cationic ligands with tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (BAr) as solubilizing counteranions, we report the preparation of soluble Zr-MOCs of different shapes (1-4) that are otherwise inaccessible through a conventional method.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China. Electronic address:
Nitrite is widely used as a food additive, and it is of great significance to realize accurate detection of nitrite for food safety. Electrochemical technique is characterized by simple operation and portability, which enables rapid and accurate detection. The key factors affecting the nitrite detection performance are the electrocatalytic activity and interfacial electron transfer efficiency of the electrode.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
Pendant organic chromophores have been used to improve the photocatalytic performance of many metal-based photosensitizers, particularly in first-row metals, by increasing π conjugation in ligands and lowering the energy of the photoactive absorption band. Using a combination of spectroscopic studies and computational modeling, we rationalize the excited state dynamics of a Co(III) complex containing pendant pyrene moieties, , where = 1,1'-(4-(pyren-1-yl)pyridine-2,6-diyl)bis(3-methyl-1-imidazol-3-ium). displays higher visible absorptivity, and blue luminescence from pyrene singlet excited states compared with [ = 1,1'-(pyridine-2,6-diyl)bis(3-methyl-1-imidazol-3-ium)] in which the pyrene moiety is absent.
View Article and Find Full Text PDFBackground: Specimen analysis is crucial for identifying imaging and neuropathological signatures. Histology is the gold-standard, but sample preparation and sectioning induce tissue deformations which hinder quantitative analysis or registration of histology to 3D MRI providing a challenge to the development of MRI biomarkers. Overall, we aim to develop a workflow to correlate histology with high-resolution MRI at a microscopic level (Figure 1), Here, we evaluate a critical step in this process - the section quality from tissue mounting techniques, comparing: A) traditional water bath (Figure 1F), and B) tape transfer (Figure 1G), for the purpose of image segmentation and correlation with high-resolution MRI.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy Northwestern University, Evanston, Illinois 60208-3113, USA.
Organic donor-acceptor (D-A) cocrystals are gaining attention for their potential applications in optoelectronic devices. This study explores the dynamics of charge transfer (CT) and triplet exciton formation in various D-A cocrystals. By examining a series of D-A cocrystals composed of coronene (COR), peri-xanthenoxanthene (PXX), and perylene (PER) donors paired with N,N-bis(3'-pentyl)perylene-3,4:9,10-bis(dicarboximide) (PDI), naphthalene-1,4:5,8-tetracarboxy-dianhydride (NDA), or pyrene-4,5,9,10-tetraone (PTO) acceptors, using transient absorption microscopy and time-resolved electron paramagnetic resonance spectroscopy, we find that the strength of the CT interaction influences the nature and yield of triplet excitons produced by CT state recombination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!