A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B. | LitMetric

Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B.

J Exp Bot

Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.

Published: June 2012

Plants have evolved several mechanisms in order to cope with adverse environmental conditions. The transcription factors (TFs) belonging to the DREB1/CBF subfamily have been described as major regulators of the plant responses to different abiotic stresses. This study focused on the rice gene OsDREB1B, initially described as highly and specifically induced by cold. However, here it is shown that OsDREB1B is not only induced by low temperatures, but also by drought and mechanical stress. In order to identify novel TFs that bind to its promoter, a yeast one-hybrid system was used to screen a cold-induced cDNA expression library. Thereby seven novel Zn-finger TFs were identified that bind to the promoter of OsDREB1B. Among them, there were four Zn-finger homeodomain (ZF-HD) and three C(2)H(2)-type Zn-finger TFs. Gene expression studies showed that these TFs are differentially regulated at transcriptional level by different abiotic stress conditions, which is illustrative of the crosstalk between stress signalling pathways. Protein-protein interaction studies revealed the formation of homo- and heterodimers among the ZF-HD TFs identified, but not for the C(2)H(2)-type. Using a transactivation assay in Arabidopsis protoplasts, all the TFs identified repressed the expression of the reporter gene, driven by the promoter of OsDREB1B. This assay also showed that the dimerization observed between the ZF-HD TFs may play a role on their transactivation activity. The results here presented suggest a prominent role of Zn-finger TFs in the regulation of OsDREB1B.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/ers035DOI Listing

Publication Analysis

Top Keywords

zn-finger tfs
12
tfs identified
12
tfs
9
transcription factors
8
gene osdreb1b
8
bind promoter
8
promoter osdreb1b
8
zf-hd tfs
8
osdreb1b
6
zinc-finger transcription
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!