Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mutations of Fms-like tyrosine kinase 3 (FLT3) are among the most frequently detected molecular abnormalities in AML patients. Internal tandem duplications (ITDs) are found in approximately 25% and point mutations within the second tyrosine kinase domain (TKD) in approximately 7% of AML patients. Patients carrying the FLT3-ITD but not the FLT3-TKD mutation have a significantly worse prognosis. Therefore, both FLT3 mutations seem to exert different biologic functions. FLT3-ITD but not FLT3-TKD has been shown to induce robust activation of the STAT5 signaling pathway. In the present study, we investigated the mechanisms leading to differential STAT5 activation and show that FLT3-ITD but not FLT3-TKD uses SRC to activate STAT5. Coimmunoprecipitation and pull-down experiments revealed an exclusive interaction between SRC but not other Src family kinases and FLT3-ITD, which is mediated by the SRC SH2 domain. We identified tyrosines 589 and 591 of FLT3-ITD to be essential for SRC binding and subsequent STAT5 activation. Using site-specific Abs, we found that both residues were significantly more strongly phosphorylated in FLT3-ITD compared with FLT3-TKD. SRC inhibition and knock-down blocked STAT5 activation and proliferation induced by FLT3-ITD but not by FLT3-TKD. We conclude that SRC might be a therapeutic target in FLT3-ITD(+) AML.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2011-07-365726 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!