The use of pharmaceuticals in livestock production is a potential source of surface water, groundwater and soil contamination. Possible impacts of antibiotics on the environment include toxicity and the emergence of antibiotic resistance. Monitoring programs are required to record the presence of these substances in the environment. A rapid, versatile and selective multi-method was developed and validated for screening 43 pharmaceutical and fungicides compounds, in surface and groundwater, in one single full-scan MS method, using benchtop U-HPLC-Exactive Orbitrap MS at 50,000 (FWHM) resolution. Detection was based on calculated exact masses and on retention time. Sample volume, pH conditions and solid-phase extraction (SPE) sample clean-up conditions were optimized. In the final method, 74 % of the compounds had recoveries higher than 80 %, 15 % of the compounds had recoveries between 60 % and 80 %, and 7 % of the compounds had recoveries between 40 % and 50 %. One of the compounds (itraconazole) had a recovery lower than 10 % and nystatin was not detected. The level of detection was 10 ng L(-1) for 61 % of the compounds, 50 ng L(-1) for 32 % and 100 ng L(-1) for 5%. In-house validation, based on EU guidelines, proves that the detection capability CCβ is lower than 10 ng L(-1) (for β error 5 %) for 37 % of the compounds, lower than 50 ng L(-1) for 35 % of the compounds and lower than 100 ng L(-1) for 14 % of compounds. This study demonstrates that the ultra-high resolution and reliable mass accuracy of Exactive Orbitrap MS permits the detection of pharmaceutical residues in a concentration range of 10-100 ng L(-1), applying a post target screening approach, in the multi-method conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-012-5888-8DOI Listing

Publication Analysis

Top Keywords

compounds recoveries
12
l-1 compounds
12
compounds
9
u-hplc-exactive orbitrap
8
recoveries compounds
8
100 l-1
8
lower l-1
8
compounds lower
8
l-1
7
accurate mass
4

Similar Publications

Immobilization of snailase and β-glucosidase on L-aspartic acid-modified magnetic amorphous ZIF for efficiently and sustainably producing ginsenoside compound K.

Int J Biol Macromol

December 2024

School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China. Electronic address:

Improving the catalytic efficiency and recyclability of immobilized enzyme remained a serious challenge in industrial applications. Enzyme immobilization in the amorphous zeolite imidazolate framework (aZIF) preserved high enzyme activity, but still faced separation difficulties and a low catalytic efficiency in practice. In this study, a one-pot co-precipitation method was used to form the enzyme-aZIF/magnetic nanoparticle (MNP) biocomposite by rapidly precipitating snailase (Sna) and β-glucosidase (β-G) with metal/ligand on MNP and modifying with L-aspartic acid (Asp).

View Article and Find Full Text PDF

UPLC-PDA-ESI-MS based chemometric analysis for solvent polarity effect evaluation on phytochemical compounds and antioxidant activity in habanero pepper (Capsicum chinense Jacq) fruit extract.

J Food Sci

December 2024

Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Unidad Sureste, Tablaje Catastral Km 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de, Yucatán, Mexico.

The effect of solvents with different polarities on the recovery of phytochemicals (carotenoids, capsaicinoids, and phenolic compounds) from habanero pepper (Capsicum chinense) and their association with antioxidant activity (ABTS and DPPH) was evaluated through Ultra-Performance-Liquid Chromatography coupled with a Photodiode Array Detector and a Electrospray Ionization Mass Spectrometry (UPLC-PDA-ESI-MS)-based chemometric analysis, including linear correlation, multiple linear regression, and principal component analysis (PCA). The solvent polarity scale was established according to solvent dielectric constants (ɛ). Color variation (ΔE) was used to determine the presence of carotenoids, with the highest ΔE obtained using low-polarity solvents (hexane and ethyl acetate).

View Article and Find Full Text PDF

A dual-signal aptamer-based assay utilizing colorimetric and fluorescence techniques was developed for the determination of zearalenone (ZEN). The CdTe quantum dots, serving as the fluorescent signal source, were surface-modified onto FeO@SiO and subsequently functionalized with the aptamer. The COF-Au was modified with complementary chain, which possessed peroxide (POD)-like enzyme properties, and could catalyze the peroxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to ox TMB, resulting in the generation of colorimetric signals.

View Article and Find Full Text PDF

An efficient modified QuEChERS procedure was established for the simultaneous determination of 37 pesticide residues in fresh and processed edible button mushroom by employing GC/ GC-MS and LC-MS/MS. The effectiveness, reliability and accuracy of the method were assessed through validation parameters such as linearity, LOD, LOQ, precision, accuracy, uncertainty, and matrix effect. The linearity calibration for all the selected pesticides at standard concentrations (0.

View Article and Find Full Text PDF

Exercise-induced muscle damage (EIMD) can affect athlete performance and is a risk factor for major muscle injury. The temporal profile of thiol-oxidized albumin, a marker of oxidative stress, has shown potential in assessing recovery from EIMD in non-athletically trained participants but not yet in trained participants. Our primary aim was to assess whether there are changes in the level of thiol-oxidized albumin after a marathon in athletically trained participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!