Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Laser microfabrication is now offering interesting solutions to rapidly produce high-resolution photomasks or microstructures. However, most works require expensive commercial lasers and computer numerical control platforms, limiting its use by a large public. In this paper, we report the construction of a simple, custom-made, easily reproducible, automated laser system, based on a DVD optical pickup head. A user-friendly computer interface specifically designed to operate a motorized three-axis platform with micrometric precision controls focus distance and in-plane displacements. Writing performance characterization for both direct ablation and sintering of commercial black toner demonstrated flexibility in tridimensional microfabrication resolution and speed thanks to precise management of laser power and exposure time, with a minimal resolution of 3.1 μm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.51.001171 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!