Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles.

Appl Opt

U.S. Army Research Laboratory, RDRL-WML-B, Aberdeen Proving Ground, Maryland 21005, USA.

Published: March 2012

The feasibility of exploiting plasma chemistry to study the chemical reactions between metallic nanoparticles and molecular explosives such as cyclotrimethylenetrinitramine (RDX) has been demonstrated. This method, based on laser-induced breakdown spectroscopy, involves the production of nanoparticles in a laser-induced plasma and the simultaneous observation of time-resolved atomic and molecular emission characteristic of the species involved in the intermediate chemical reactions of the nanoenergetic material in the plasma. Using this method, it has been confirmed that the presence of aluminum promotes the ejection process of carbon from the intermediate products of RDX. The time evolution of species formation, the effects of laser pulse energy, and the effects of trace metal content on the chemical reactions were also studied.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.51.000B13DOI Listing

Publication Analysis

Top Keywords

chemical reactions
12
laser-induced plasma
8
plasma chemistry
8
metallic nanoparticles
8
chemistry explosive
4
explosive rdx
4
rdx metallic
4
nanoparticles feasibility
4
feasibility exploiting
4
exploiting plasma
4

Similar Publications

Recent Advances in Radical Coupling Reactions Directly Involving Bicyclo[1.1.1]pentane (BCP).

Top Curr Chem (Cham)

January 2025

School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.

BCP (bicyclo[1.1.1]pentane) is an ideal saturated carbon bioisostere, instead of the traditional benzene group, which has been extensively developed.

View Article and Find Full Text PDF

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

Unlocking the Key to Photocatalytic Hydrogen Production Using Electronic Mediators for Z-Scheme Water Splitting.

J Am Chem Soc

January 2025

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.

A prevalent challenge in particulate photocatalytic water splitting lies in the fact that while numerous photocatalysts exhibit outstanding hydrogen evolution reaction (HER) activity in organic sacrificial reagents, their performance diminishes markedly in a Z-scheme water splitting system using electronic mediators. This underlying reason remains undefined, posing a long-standing issue in photocatalytic water splitting. Herein, we unveiled that the primary reason for the decreased HER activity in electronic mediators is due to the strong adsorption of shuttle ions on cocatalyst surfaces, which inhibits the initial proton reduction and results in a severe backward reaction of the oxidized shuttle ions.

View Article and Find Full Text PDF

1,1-Difluoroallenes underwent regioselective [2 + 2] and [3 + 2] cycloadditions with aldehydes using Au(I) catalysts. An AuCl catalyst enabled an α,β-selective [2 + 2] cycloaddition of 1,1-difluoroallenes, yielding ()-3-alkylidene-2,2-difluorooxetanes. Conversely, an AuCl(IPr)-AgSbF catalyst facilitated an α,γ-selective [3 + 2] cycloaddition, followed by dehydrofluorination to produce aromatized 2-fluorofurans.

View Article and Find Full Text PDF

Electrochemical Ammonia Synthesis at -Block Active Sites Using Various Nitrogen Sources: Theoretical Insights.

J Phys Chem Lett

January 2025

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.

Electrochemical nitrogen conversion for ammonia (NH) synthesis, driven by renewable electricity, offers a sustainable alternative to the traditional Haber-Bosch process. However, this conversion process remains limited by a low Faradaic efficiency (FE) and NH yield. Although transition metals have been widely studied as catalysts for NH synthesis through effective electron donation/back-donation mechanisms, there are challenges in electrochemical environments, including competitive hydrogen evolution reaction (HER) and catalyst stability issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!