Molecular-scale surface chemistry of a common metal nanoparticle capping agent: triphenylphosphine on Au(111).

ACS Nano

Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts, United States.

Published: April 2012

Phosphine-stabilized Au clusters have been extensively studied and are used in various applications due to their unique structural, catalytic, and electronic properties. Triphenylphosphine (PPh(3)) is a key stabilizing ligand in the synthesis of Au nanoclusters. Despite its intense use in nanoparticle synthesis protocols, little is known regarding its surface chemistry, monolayer structure, density, and packing arrangement, all of which are important descriptors of functionality. Here, in contrast to sparse earlier investigations, we report that PPh(3) forms very ordered structures on Au(111). Atomic-scale imaging reveals that monolayer formation is accompanied by a partial lifting of the Au(111) surface reconstruction and ejection of extra Au atoms in the surface layer. Interestingly, these atoms are trapped and stabilized as two-dimensional Au nanoislands within the molecular layer. This behavior is in contrast to thiols, also common capping agents, which tend to remove Au atoms beyond those extra atoms present in the native reconstruction and form vacancy islands on the surface. Our data illustrate PPh(3)'s milder reactivity and reveal a new picture of its packing structure. These results shed new light on the surface chemistry of this important ligand for organic, organometallic, and nanoparticle synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn300582gDOI Listing

Publication Analysis

Top Keywords

surface chemistry
12
nanoparticle synthesis
8
extra atoms
8
surface
5
molecular-scale surface
4
chemistry common
4
common metal
4
metal nanoparticle
4
nanoparticle capping
4
capping agent
4

Similar Publications

Self-organization under out-of-equilibrium conditions is ubiquitous in natural systems for the generation of hierarchical solid-state patterns of complex structures with intricate properties. Efforts in applying this strategy to synthetic materials that mimic biological function have resulted in remarkable demonstrations of programmable self-healing and adaptive materials. However, the extension of these efforts to multifunctional stimuli-responsive solid-state materials across defined spatial distributions remains an unrealized technological opportunity.

View Article and Find Full Text PDF

Enhancing Carbon Monoxide Tolerance in Low-Temperature PEM Fuel Cells through Carbon Nitride Surface Modification.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Low-temperature proton exchange membrane fuel cells (PEMFCs) reuqire highly pure hydrogen gas due to their extreme sensitivity to carbon monoxide (CO) contamination, which poses a challenge for using cost-effective reformed hydrogen sources. To address this issue, we have developed a surface modification strategy by applying a 0.5-0.

View Article and Find Full Text PDF

Potential Air Quality Side-Effects of Emitting HO to Enhance Methane Oxidation as a Climate Solution.

Environ Sci Technol

January 2025

Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah 84112, United States.

Methane (CH) is a greenhouse gas with a global warming potential 81.2 times higher than carbon dioxide (CO). The intentional emission of oxidants into the atmosphere has been proposed as a geoengineering solution to accelerate the oxidation of CH to CO, thereby reducing surface warming.

View Article and Find Full Text PDF

IR-Driven Multisignal Conditioning for Multiplex Detection: Thermal-Responsive Triple DNA-Mediated Reconfigurable Photoelectrochemical/Photothermal Dual-Mode Strategy.

ACS Sens

January 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.

Superior to traditional multiplex photoelectrochemical (PEC) sensors, integrated multitarget assay on a single reconstructive electrode interface is promising in real-time detection through eliminating the need of specialized instrumentation and cumbersome interfacial modifications. Current interface reconstruction approaches including pH modulation and bioenzyme cleavage involve biohazardous and time-consuming operations, which cannot meet the demand for rapid, eco-friendly, and portable detection, which are detrimental to the development of multiplex PEC sensors toward portability. Herein, we report a pioneer work on IR-driven "four-to-one" multisignal conditioning to facile reconfigure electrode interface for multitarget detection via photoelectrochemical/photothermal dual mode.

View Article and Find Full Text PDF

This work aims to deal with the challenges associated with designing complementary bifunctional electrocatalysts and a separator/membrane that enables rechargeable zinc-air batteries (RZABs) with nearly solid-state operability. This solid-state RZAB was accomplished by integrating a bifunctional electrocatalyst based on Ru-RuO interface nanoparticles supported on nitrogen-doped (N-doped) graphene (Ru-RuO/NGr) and a dual-doped poly(acrylic acid) hydrogel (d-PAA) electrolyte soaked in KOH with sodium stannate additive. The catalyst shows enhanced activity and stability toward the two oxygen reactions, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!