The detection of superparamagnetic nanoparticles using NMR logging has the potential to provide enhanced contrast in oil reservoir rock formations. The stability of the nanoparticles is critical because the NMR relaxivity (R(2) ≡ 1/T(2)) is dependent on the particle size. Here we use a molecular theory to predict and validate experimentally the stability of citric acid-coated/PEGylated iron oxide nanoparticles under different pH conditions (pH 5, 7, 9, 11). The predicted value for the critical surface coverage required to produce a steric barrier of 5k(B)T for PEGylated nanoparticles (MW 2000) was 0.078 nm(-2), which is less than the experimental value of 0.143 nm(-2), implying that the nanoparticles should be stable at all pH values. Dynamic light scattering (DLS) measurements showed that the effective diameter did not increase at pH 7 or 9 after 30 days but increased at pH 11. The shifts in NMR relaxivity (from R(2) data) at 2 MHz agreed well with the changes in hydrodynamic diameter obtained from DLS data, indicating that the aggregation behavior of the nanoparticles can be easily and quantitatively detected by NMR. The unexpected aggregation at pH 11 is due to the desorption of the surface coating (citric acid or PEG) from the nanoparticle surface not accounted for in the theory. This study shows that the stability of the nanoparticles can be predicted by the theory and detected by NMR quantitatively, which suggests the nanoparticles to be a possible oil-field nanosensor.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la204628cDOI Listing

Publication Analysis

Top Keywords

nanoparticles
9
iron oxide
8
oxide nanoparticles
8
stability nanoparticles
8
nmr relaxivity
8
detected nmr
8
nmr
5
stability
4
stability superparamagnetic
4
superparamagnetic iron
4

Similar Publications

Methicillin-resistant (MRSA) causes osteomyelitis (OM), which seriously threatens public health due to its antimicrobial resistance. To increase the sensitivity of antibiotics and eradicate intracellular bacteria, a Zn and vancomycin (Van) codelivered nanotherapeutic (named Man-Zn/Van NPs) was fabricated and characterized via mannose (Man) modification. Man-Zn/Van NPs exhibit significant inhibitory activity against extra- and intracellular MRSA and obviously decrease the minimum inhibitory concentration of Van.

View Article and Find Full Text PDF

Nanoscale Metal-Organic Frameworks for the Co-Delivery of Cycloxaprid and Pooled siRNAs to Enhance Control Efficacy in .

J Agric Food Chem

January 2025

China-Kenya Joint Laboratory for Ecological Pest Control of Citrus, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

RNA pesticides have emerged as a promising alternative to conventional chemical pesticides due to their high specificity and minimal environmental impact. However, the instability of RNA molecules in the environment and the challenges associated with their effective delivery to target pests limit their broader application. This study addresses these challenges by developing a dual delivery system using chitosan (CS) and Metal-Organic Frameworks (MOFs) to enhance the delivery and efficacy of double-stranded RNA (dsRNA) and cycloxaprid against , a vector of citrus greening disease.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) play a key role in the field of nanomedicine due to their fascinating plasmonic properties as well as their great biocompatibility. An intriguing application is the use of plasmonic photothermal therapy (PPTT) mediated by anisotropic AuNPs irradiated with a near-infrared (NIR) laser for treating ocular diseases in ophthalmology. For this purpose, bipyramidal-shaped AuNPs (BipyAu), which were surface-functionalized with three different organic ligands (citrate, polystyrene sulphonate (PSS), and cetyltrimethylammonium bromide (CTAB)), were synthesized.

View Article and Find Full Text PDF

Astaxanthin (AST), as a natural antioxidant, has broad application prospects in medicine and health products. However, its highly unsaturated structure and significant lipophilic characteristics limit its dispersibility and bioavailability, thereby restricting its application in food, medicines, and nutraceuticals. To overcome these limitations, researchers have proposed the use of nano delivery systems.

View Article and Find Full Text PDF

Peri-implant diseases, such as peri-implantitis, affect up to 47% of dental implant recipients, primarily due to biofilm formation. Current decontamination methods vary in efficacy, prompting interest in polymeric nanoparticles (NPs) for their antimicrobial and protein-specific cleaning properties. This study evaluated the efficacy of polymeric nanoparticles (NPs) in decontaminating titanium dental implants by removing proteinaceous pellicle layers and resisting recontamination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!