Self-assembled ultrathin Ni(x)Fe(1-x)(OH)2 nanodiscs have been synthesized by using a wet-chemistry method. The uniformity and the assembly of Ni(x)Fe(1-x)(OH)2 nanostructures are sensitive to the iron ion concentration in the precursor. An optimum iron concentration of 10% results in the formation of uniform ultrathin Ni(x)Fe(1-x)(OH)2 nanodiscs with a typical side length of 50 nm and a thickness of 10 nm. They are also self-assembled by connecting their (001) facets with in-plane orientation and form a chain-like microstructure. Lattice relaxation is present within several atomic layers at the interfaces between two adjacent nanodiscs, which introduces about 6 degrees misalignment of these nanocrystals. Analytical electron microscopy analysis reveals that the iron additive atoms distribute uniformly in the nanodiscs and they are substitution atoms of Ni atoms. It has been found that the iron species is critical to the formation and assembly of the hexagonal nanodiscs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2011.4013 | DOI Listing |
ACS Nano
January 2025
Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Korea.
HfO-based thin films have garnered significant interest for integrating robust ferroelectricity into next-generation memory and logic chips, owing to their applicability with modern Si device technology. While numerous studies have focused on enhancing ferroelectric properties and understanding their fundamentals, the fabrication of ultrathin HfO-based ferroelectric films has seldom been reported. This study presents the concept of atomic-level stoichiometry control of ferroelectric HfZrO films by examining the molecular-level interactions of precursor molecules in the atomic layer deposition (ALD) process through theoretical calculations.
View Article and Find Full Text PDFACS Sens
January 2025
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
An effective long-term nitrogen dioxide (NO) monitoring at trace concentration is critical for protecting the ecological environment and public health. Tellurium (Te), as a recently discovered 2D elemental material, is promising for NO detection because of its suitable band structure for gas adsorption and charge mobility. However, the high activity of Te leads to poor stability in ambient and harsh conditions, limiting its application as a gas-sensitive material.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China.
Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.
View Article and Find Full Text PDFNanoscale
January 2025
School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.
Angew Chem Int Ed Engl
January 2025
University of North Texas, Department of Chemistry, 1508 W Mulberry St, 76201, Denton, UNITED STATES OF AMERICA.
Converting CO2 to high-value fine chemicals represents one of the most promising approaches to combat global warming and subsequently achieve a sustainable carbon cycle. Herein, we contribute an organoboron functionalized ultra-thin metal-organic nanosheet (MON), termed TCPB-Zr-NS, featuring an abundance of exposed Lewis acidic B and formate sites, which can effectively promote CO2 conversion upon the addition of Lewis basic o-phenylenediamines. Compared with the prototypical 3D analogue TCPB-Zr-3D, the resultant TCPB-Zr-NS showcases dramatically improved catalytic activity for the cyclization of o-phenylenediamine as a result of the highly exposed active sites and efficient substrates/products diffusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!