Despite ethical arguments against lethal control of wildlife populations, culling is routinely used for the management of predators, invasive or pest species, and infectious diseases. Here, we demonstrate that culling of wildlife can have unforeseen impacts that can be detrimental to future conservation efforts. Specifically, we analyzed genetic data from eastern wolves (Canis lycaon) sampled in Algonquin Provincial Park (APP), Ontario, Canada from 1964 to 2007. Research culls in 1964 and 1965 killed the majority of wolves within a study region of APP, accounting for approximately 36% of the park's wolf population at a time when coyotes were colonizing the region. The culls were followed by a significant decrease in an eastern wolf mitochondrial DNA (mtDNA) haplotype (C1) in the Park's wolf population, as well as an increase in coyote mitochondrial and nuclear DNA. The introgression of nuclear DNA from coyotes, however, appears to have been curtailed by legislation that extended wolf protection outside park boundaries in 2001, although eastern wolf mtDNA haplotype C1 continued to decline and is now rare within the park population. We conclude that the wolf culls transformed the genetic composition of this unique eastern wolf population by facilitating coyote introgression. These results demonstrate that intense localized harvest of a seemingly abundant species can lead to unexpected hybridization events that encumber future conservation efforts. Ultimately, researchers need to contemplate not only the ethics of research methods, but also that future implications may be obscured by gaps in our current scientific understanding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297175PMC
http://dx.doi.org/10.1002/ece3.61DOI Listing

Publication Analysis

Top Keywords

wolf population
12
eastern wolf
12
eastern wolves
8
future conservation
8
conservation efforts
8
park's wolf
8
mtdna haplotype
8
nuclear dna
8
wolf
7
eastern
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!