Microglial activation - tuning and pruning adult neurogenesis.

Front Pharmacol

Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Wallenberg Neuroscience Center, Department of Clinical Sciences, Lund University and Skåne University Hospital Lund, Sweden.

Published: October 2012

NEW NEURONS ARE CONTINUOUSLY GENERATED IN TWO ADULT BRAIN REGIONS: the subgranular zone of the hippocampus and the subependyma by the lateral ventricles, referred to as the neurogenic niches. During their development from neural stem cells to mature functionally integrated neurons numerous choices are made, such as proliferation or quiescence, cell survival or death, migration or establishment, growth or retraction of processes, synaptic assembly or pruning, or tuning of synaptic transmission. The process is altered by physiological stimuli as well as several brain diseases. Microglia are located within the neurogenic niches and have become interesting candidates for modulating neurogenesis in both the healthy and injured brain. They become activated by foreign antigens or changes in the brain homeostasis and transform this innate immunity into an adaptive immune response by recruiting systemic immune cells. Most studies report an acute decrease in the survival of new neurons following this classically activated microglia reaction. The long-term effects are more complex. In neurodegenerative diseases, microglial activation is more heterogeneous and the transformation from a pro- to an anti-inflammatory cytokine profile and the deactivation of microglia is not well defined. The diversity is reflected by numerous reports describing both beneficial and detrimental effects on neurogenesis, primarily on the proliferation, survival, and cell fate. However, relatively few studies have investigated alterations at later stages of neurogenesis including the functional integration. Though likely, it is not established how a fine-tuned cross-talk between microglia and adult-born neurons would work and how it changes upon microglia activation. This review will therefore launch three hypotheses for how microglia might direct synaptic integration of newborn neurons, currently a fast expanding research field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297835PMC
http://dx.doi.org/10.3389/fphar.2012.00041DOI Listing

Publication Analysis

Top Keywords

microglial activation
8
neurogenic niches
8
microglia
6
neurons
5
activation tuning
4
tuning pruning
4
pruning adult
4
neurogenesis
4
adult neurogenesis
4
neurogenesis neurons
4

Similar Publications

Targeting to mitigate amyloid-β pathology in Alzheimer's disease.

J Alzheimers Dis

January 2025

School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.

SPI1, a transcription factor implicated in myeloid cell development, has emerged as a genetic risk factor for Alzheimer's disease (AD). Recent in vivo studies reveal that knockdown in mice exacerbates AD pathology by increasing amyloid-β aggregation and gliosis while overexpression ameliorates these features. Transcriptomic analyses suggest that regulates microglial immune response, complement activation, and phagocytosis.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common type of dementia. Its incidence is rising rapidly as the global population ages, leading to a significant social and economic burden. AD involves complex pathologies, including amyloid plaque accumulation, synaptic dysfunction, and neuroinflammation.

View Article and Find Full Text PDF

A microglial kinase ITK mediating neuroinflammation and behavioral deficits in traumatic brain injury.

Mol Cell Neurosci

January 2025

Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea. Electronic address:

Microglia-mediated neuroinflammation has been implicated in the neuropathology of traumatic brain injuries (TBI). Recently, the expression of interleukin-2-inducible T-cell kinase (ITK) has been detected in brain microglia, regulating their inflammatory activities. However, the role of microglial ITK in TBI has not been investigated.

View Article and Find Full Text PDF

Unraveling the dual role of bilirubin in neurological Diseases: A Comprehensive exploration of its neuroprotective and neurotoxic effects.

Brain Res

January 2025

Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India. Electronic address:

Neurodegenerative disorders are characterized by a progressive loss of neurons, causing substantial deficits in motor and cognitive functioning. Bilirubin is a yellow by-product of heme, existing in two primary isoforms namely unconjugated and conjugated, while initially produced unconjugated isomer is lipophilic and cytotoxic in nature. At physiological levels, bilirubin has an important role in brain function by acting as a powerful antioxidant, preventing brain tissues from oxidative damage by eliminating reactive oxygen species (ROS).

View Article and Find Full Text PDF

JAK/STAT3 signaling promotes pain and depression-like behaviors in rats with bone cancer pain by regulating Th17 cell differentiation.

Brain Res Bull

January 2025

Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China; Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou 350000, China. Electronic address:

Background: Pain and depression are common complications in patients with advanced cancer, which significantly affects their quality of life and survival. Dysregulation of the JAK/STAT3 pathway in the central nervous system is associated with pain and brain inflammatory disorders, but its role in bone cancer pain (BCP) remains unclear. This study aimed to investigate the specific role of the JAK/STAT3 pathway in the amygdala in BCP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!