The magnitudes of pulmonary responses we previously observed (1) following 6.6-h exposures to 0.12 ppm ozone (O3) suggested that responses would also occur with similar exposures at lower O3 concentrations. The objective of this study was to determine the extent of pulmonary function decrements, respiratory discomfort, and increased airway reactivity to methacholine induced by exposure to O3 below 0.12 ppm. Separate 6.6-h chamber exposures to 0.00, 0.08, 0.10, and 0.12 ppm O3 included six 50-min periods of moderate exercise (VE approximately equal to 39 L/min, HR approximately equal to 115 bpm, and VO2 approximately equal to 1.5 L/min). Each exercise period was followed by 10 min of rest. A 35-min lunch break was included midway through the exposure. Although not intended as an exact simulation, the overall duration, intensity, and metabolic requirements of the exercise performed were representative of a day of moderate to heavy work or play. Preexposure FEV1 averaged 4.39 L, and essentially no change (+0.03 L) occurred with exposure to 0.00 ppm O3. Significant decreases (p less than 0.01) of -0.31, -0.30, and -0.54 L were observed with exposures to 0.08, 0.10, and 0.12 ppm, respectively. The provocative dose of methacholine required to increase airway resistance by 100% (PD100) was 58 cumulative inhalation units (CIU) following exposure to 0.00 ppm and was significantly reduced (p less than 0.01) to 37 CIU at 0.08, 31 CIU at 0.10, and 26 CIU at 0.12 ppm O3; reductions in PD100 are considered indicative of increases in nonspecific airway responsiveness.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1164/ajrccm/142.5.1158 | DOI Listing |
China CDC Wkly
December 2024
Chinese Center for Disease Control and Prevention, Beijing, China.
Introduction: Glycidyl methacrylate (GMA) is a widely used industrial polymerization material. Current occupational exposure limits (OELs) for GMA in China show significant disparities compared to those established by international regulatory bodies, including the United States, the European Union, and Japan. A comprehensive revision of GMA exposure limits is crucial for ensuring optimal worker protection.
View Article and Find Full Text PDFTo explore whether ultra-sensitive circulating tumor DNA (ctDNA) profiling enables early prediction of treatment response and early detection of disease progression, we applied NeXT Personal, an ultra-sensitive bespoke tumor-informed liquid biopsy platform, to profile tumor samples from the KeyLargo study, a phase II trial in which metastatic esophagogastric cancer (mEGC) patients received capecitabine, oxaliplatin, and pembrolizumab. All 25 patients evaluated were ctDNA-positive at baseline. Minimal residual disease (MRD) events varied from 406,067 down to 1.
View Article and Find Full Text PDFProg Nucl Magn Reson Spectrosc
October 2024
Department of Chemistry, University of York, York, YO10 5DD, UK. Electronic address:
Benchtop NMR spectrometers, with moderate magnetic field strengths (B=1-2.4T) and sub-ppm chemical shift resolution, are an affordable and portable alternative to standard laboratory NMR (B≥7T). However, in moving to lower magnetic field instruments, sensitivity and chemical shift resolution are significantly reduced.
View Article and Find Full Text PDFCardiol Rev
September 2024
Faculty of Medicine, Al-Quds University, East Jerusalem, Palestine.
Neurology
September 2024
From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY.
Background And Objectives: Myelin and iron play essential roles in remyelination processes of multiple sclerosis (MS) lesions. χ-separation, a novel biophysical model applied to multiecho T2*-data and T2-data, estimates the contribution of myelin and iron to the obtained susceptibility signal. We used this method to investigate myelin and iron levels in lesion and nonlesion brain areas in patients with MS and healthy individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!