Radiofrequency ablation (RFA) aims to produce lesions that interrupt reentrant circuits or block the spread of electrical activation from sites of abnormal activity. Today, there are limited means for real-time visualization of cardiac muscle tissue injury during RFA procedures. We hypothesized that the fluorescence of endogenous NADH could be used as a marker of cardiac muscle injury during epicardial RFA procedures. Studies were conducted in blood-free and blood-perfused hearts from healthy adult Sprague-Dawley rats and New Zealand rabbits. Radiofrequency was applied to the epicardial surface of the heart using a 4-mm standard blazer ablation catheter. A dual camera optical mapping system was used to monitor NADH fluorescence upon ultraviolet illumination of the epicardial surface and to record optical action potentials using the voltage-sensitive probe RH237. Epicardial lesions were seen as areas of low NADH fluorescence. The lesions appeared immediately after ablation and remained stable for several hours. Real-time monitoring of NADH fluorescence allowed visualization of viable tissue between the RFA lesions. Dual recordings of NADH and epicardial electrical activity linked the gaps between lesions to postablation reentries. We found that the fluorescence of endogenous NADH aids the visualization of injured epicardial tissue caused by RFA. This was true for both blood-free and blood-perfused preparations. Gaps between NADH-negative regions revealed unablated tissue, which may promote postablation reentry or provide pathways for the conduction of abnormal electrical activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3362111 | PMC |
http://dx.doi.org/10.1152/ajpheart.01141.2011 | DOI Listing |
J Biol Chem
December 2024
Institute of Biomedicine, University of Turku, Turku, Finland.
Enzyme promiscuity is the ability of an enzyme to catalyze an unexpected side reaction in addition to its main reaction. Here, we describe a biocatalytic process to produce non-hydrolyzable NAD+ analogs based on the ADP-ribosyltransferase (ART) activity of pertussis toxin PtxS1 subunit. First, in identical manner to normal catalysis, PtxS1 activates NAD+ to form the reactive oxocarbenium cation.
View Article and Find Full Text PDFJ Biomed Opt
December 2024
Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States.
Significance: Cellular metabolic dynamics can occur within milliseconds, yet there are no optimal tools to spatially and temporally capture these events. Autofluorescence imaging can provide metabolic information on the cellular level due to the intrinsic fluorescence of reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] and flavin adenine dinucleotide (FAD).
Aim: Our goal is to build and evaluate a widefield microscope optimized for rapid autofluorescence imaging of metabolic changes in cells.
Lasers Surg Med
December 2024
Clinic and Polyclinic for Otolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Objectives: With over 184,000 new cases and more than 99,000 deaths per year, malignancies of the larynx are a global health problem. Currently, a dedicated screening method enabling a direct onsite diagnosis is missing. This can lead to delayed diagnosis and worse outcomes of the patients.
View Article and Find Full Text PDFPurpose: The aim of this study was to test whether oral administration of nicotinamide riboside (NR), the nicotinamide adenine dinucleotide (NAD+) precursors, protect retina ganglion cells (RGCs) from neurodegeneration in DBA/2J (D2) mice, which is a widely used mouse model of age-related inherited glaucoma.
Method: Oral NR or NAM administration (NR low dose: 1150mg/kg; NR high dose: 4200mg/kg; NAM low dose group: 500mg/kg; NAM high dose: 2000mg/kg of body weight per day) essentially started when D2 mice were 4 or 9 months old and continued up to 12 months old. Control cohort identically received food/water without NAM or NR.
In Vitro Model
July 2024
Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR USA.
Purpose: assays are essential for studying cellular biology, but traditional monolayer cultures fail to replicate the complex three-dimensional (3D) interactions of cells in living organisms. 3D culture systems offer a more accurate reflection of the cellular microenvironment. However, 3D cultures require robust and unique methods of characterization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!